Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (5): 492-496    DOI: 10.3866/PKU.WHXB201709221
所属专题: 密度泛函理论中的化学概念特刊
论文     
Phase Space View of Ensembles of Excited States
NAGY Ágnes*()
Phase Space View of Ensembles of Excited States
Ágnes NAGY*()
 全文: PDF(245 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

The density functional theory and its extension to ensembles of excited states can be formalized as thermodynamics. However, these theories are not unique because one of their key quantities, the kinetic energy density, can be defined in several ways. Usually, the everywhere positive gradient form is applied; however, other forms are also acceptable, provided they integrate to the true kinetic energy. Recently, a kinetic energy density of the ground-state theory maximizing the information entropy has been proposed. Here, ensemble kinetic energy density, leading to extremum information entropy, is derived via constrained search. The corresponding ensemble temperature is found to be constant.

关键词: Ensemble of excited statesKinetic energy densityConstrained searchEnsemble temperature    
Abstract:

The density functional theory and its extension to ensembles of excited states can be formalized as thermodynamics. However, these theories are not unique because one of their key quantities, the kinetic energy density, can be defined in several ways. Usually, the everywhere positive gradient form is applied; however, other forms are also acceptable, provided they integrate to the true kinetic energy. Recently, a kinetic energy density of the ground-state theory maximizing the information entropy has been proposed. Here, ensemble kinetic energy density, leading to extremum information entropy, is derived via constrained search. The corresponding ensemble temperature is found to be constant.

Key words: Ensemble of excited states    Kinetic energy density    Constrained search    Ensemble temperature
收稿日期: 2017-08-11 出版日期: 2017-09-22
基金资助: The project was supported by the National Research, Development and Innovation Fund of Hungary, Financed under the 123988 Funding Scheme(51335008)
通讯作者: NAGY ágnes     E-mail: anagy@phys.unideb.hu
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
NAGY ágnes

引用本文:

NAGY Ágnes. Phase Space View of Ensembles of Excited States[J]. 物理化学学报, 2018, 34(5): 492-496, 10.3866/PKU.WHXB201709221

Ágnes NAGY. Phase Space View of Ensembles of Excited States. Acta Phys. -Chim. Sin., 2018, 34(5): 492-496, 10.3866/PKU.WHXB201709221.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201709221        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I5/492

1 Hohenberg P. ; Kohn W. Phys. Rev. 1964, 136, B864.
doi: 10.1103/PhysRev.136.B864
2a Gunnarsson O. ; Lundqvist B. I. Phys. Rev. B 1976, B13, 4274.
doi: 10.1103/PhysRevB.13.4274
2b Gunnarsson O. ; Jonson M. ; Lundqvist B. I. Phys. Rev. B 1979, 20, 3136.
doi: 10.1103/PhysRevB.20.3136
3 von Barth U. Phys. Rev. A 1979, 20, 1693.
doi: 10.1103/PhysRevA.20.1693
4 Theophilou A.K. J. Phys. C 1978, C12, 5419.
doi: 10.1088/0022-3719/12/24/013
5a Gross E. K. U. ; Oliveira L.N. ; Kohn W. Phys. Rev. A 1988, 37, 2805.
doi: 10.1103/PhysRevA.37.2805
5b Gross E. K. U. ; Oliveira L.N. ; Kohn W. Phys. Rev. A 1988, 37, 2809.
doi: 10.1103/PhysRevA.37.2809
5c Gross E. K. U. ; Oliveira L.N. ; Kohn W. Phys. Rev. A 1988, 37, 2821.
doi: 10.1103/PhysRevA.37.2821
6 Nagy á. Phys. Rev. A 1990, 42, 4388.
doi: 10.1103/PhysRevA.42.4388
7 Nagy á. J. Phys. B 1991, 24, 4691.
doi: 10.1088/0953-4075/24/22/008
8 Nagy á. ; Andrejkovics I. J.Phys. B 1994, 27, 233.
doi: 10.1088/0953-4075/27/2/002
9 Nagy á. Int. J. Quantum. Chem. 1995, 56, 225.
doi: 10.1002/qua.560560406
10 Nagy á. J. Phys. B 1996, 29, 389.
doi: 10.1088/0953-4075/29/3/007
11 Nagy á. Int. J. Quantum. Chem. 1995, 29 (Suppl.), 297.
doi: 10.1002/qua.560560833
12 Nagy á. Adv. Quantum. Chem. 1997, 29, 159.
doi: 10.1016/S0065-3276(08)60268-3
13 Nagy á. Phys. Rev. A 1994, 49, 3074.
doi: 10.1103/PhysRevA.49.3074
14 Nagy á. Int. J. Quantum. Chem. 1998, 69, 247.
doi: 10.1002/(SICI)1097-461X(1998)69:3<247::AIDQUA4>3.0.CO;2-V
15 G?rling A. Phys. Rev. A 1996, 54, 3912.
doi: 10.1103/PhysRevA.54.3912
16a G?rling A. ; Levy M. Phys. Rev. B 1993, 47, 13105.
doi: 10.1103/PhysRevB.47.13105
16b G?rling A. ; Levy M. Phys. Rev. A 1994, 50, 196.
doi: 10.1103/PhysRevA.50.196
16c G?rling A. ; Levy M. Int. J. Quantum. Chem. 1995, 29 (Suppl.), 93.
doi: 10.1002/qua.560560810
17 Nagy á. Int. J. Quantum. Chem. 1998, 70, 681.
doi: 10.1002/(SICI)1097-461X(1998)70:4/5<681::AIDQUA14>3.0.CO;2-5
18 Levy M. ; Nagy á. Phys. Rev. Lett. 1999, 83, 4361.
doi: 10.1103/PhysRevLett.83.4361
19 Nagy á. ; Levy M. Phys. Rev. A 2001, 63, 052502.
doi: 10.1103/PhysRevA.63.052502
20 Ayers P. W. ; Levy M. ; Nagy á. Phys. Rev. A 2012, 85, 042518.
doi: 10.1103/PhysRevA.85.042518
21 Ayers P. W. ; Levy M. ; Nagy á. J. Chem. Phys. 2015, 143, 191101.
doi: 10.1063/1.4934963
22 Gross E. U. K. ; Dobson J. F. ; Petersilka M. Density Functional Theory. In Topics in Current Chemistry; Nalewajski R., Ed. Springer-Verlag: Heidelberg, Germany 1996, Vol. 81, p. 81.
23 Casida M. F. Recent Advances in the Density Functional Methods. in Recent Advances in Computational Chemistry; Chong D. P., Ed. World Scientific: Singapore 1996, Vol. 1, p. 155.
24 Ghosh S. K. ; Berkowitz M. ; Parr R. G. Proc. Natl. Acad. Sci. USA 1984, 81, 8028.
doi: 10.1073/pnas.81.24.8028
25 Ghosh S. K. ; Parr R. G. Phys.Rev. A 1986, 34, 785.
doi: 10.1103/PhysRevA.34.785
26 Ghosh S. K. ; Berkowitz M. J.Chem. Phys. 1985, 83, 2976.
doi: 10.1063/1.449846
27 Parr R. G. ; Rupnik K. ; Ghosh S. K. Phys. Rev. Lett. 1986, 56, 1555.
doi: 10.1103/PhysRevLett.56.1555
28 Lee C. ; Parr R. G. Phys. Rev. A 1987, 35, 2377.
doi: 10.1103/PhysRevA.35.2377
29 Rong C. Y. ; Lu T. ; Chattaraj P. K. ; Liu S. B. Indian J. Chem. A 2014, 53, 970.
30 Gadre S. R. ; Bendale R. D. Int. J. Quant. Chem. 1985, 28, 311.
doi: 10.1002/qua.560280212
31 Gadre S. R. ; Sears S. B. ; Chakravorty S. J. ; Bendale R. D. Phys. Rev. A 1985, 32, 2602.
doi: 10.1103/PhysRevA.32.2602
32 Gadre S. R. Phys. Rev. A 1984, 30, 620.
doi: 10.1103/PhysRevA.30.620
33 Gadre S. R. ; Kulkani S. A. ; Shrivastava I. H. Chem. Phys. Lett. 1990, 166, 445.
doi: 10.1016/0009-2614(90)85058-K
34 Gadre S. R. ; Bendale R. D. ; Gejii S. P. Chem. Phys. Lett. 1985, 117, 138.
doi: 10.1016/0009-2614(85)85222-2
35 Nagy á. ; Parr R. G. Proc. Ind. Acad. Sci. Chem. Sci. 1984, 106, 217.
36 Nagy á. ; Parr R. G. J.Mol. Struct. (Theochem) 2000, 501, 101.
doi: 10.1016/S0166-1280(99)00418-2
37 Nagy á. ; Parr R. G. Int. J. Quantum Chem. 1996, 58, 323.
doi: 10.1002/(SICI)1097-461X(1996)58:4<323::AIDQUA1>3.0.CO;2
38 Nagy á. Proc. Ind. Acad. Sci. (Chem. Sci) 1994, 106, 251.
39 Nagy á. Reviews of Modern Quantum Chemistry; Sen, K. D. Ed. World Scientific: Singapore 2002, Vol. Ⅰ, p. 413.
40 Nagy á. J. Mol. Struct. Theochem 2010, 943, 48.
doi: 10.1016/j.theochem.2009.10.010
41 Nagy á. Indian J. Chem. A 2014, 53, 965.
42 Nagy á. Int. J. Quantum Chem. 2017, 117, e5396.
doi: 10.1002/qua.25396
43 Levy M. Proc. Natl. Sci. USA 1979, 76, 6002.
44 Lieb H. Int. J. Quantum Chem. 1982, 24, 243.
doi: 10.1002/qua.560240302
[1] AYERS Paul W.,LEVY Mel. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. 物理化学学报, 2018, 34(6): 625-630.