物理化学学报 >> 2019, Vol. 35 >> Issue (10): 1099-1111.doi: 10.3866/PKU.WHXB201811005
所属专题: 二维材料及器件
收稿日期:
2018-11-05
发布日期:
2018-12-03
通讯作者:
黄晓
E-mail:iamxhuang@njtech.edu.cn
作者简介:
Xiao Huang received her bachelor's degree from the School of Materials Science and Engineering at Nanyang Technological University in Singapore in 2006 and completed her PhD in 2011 under the supervision of Prof. Hua Zhang and Prof. Freddy Boey. She is currently a professor at the Institute of Advanced Materials (IAM), Nanjing Tech University. Her research interest includes the synthesis and applications of two-dimensional nanomaterial-based hybrids
基金资助:
Qiang LIU,Xiaoshan WANG,Jialiang WANG,Xiao HUANG*()
Received:
2018-11-05
Published:
2018-12-03
Contact:
Xiao HUANG
E-mail:iamxhuang@njtech.edu.cn
Supported by:
摘要:
近年来,二维材料异质结构的兴起进一步促进了二维材料领域的发展。在异质结构中,不同组分的界面作用或耦合效应会产生有趣的现象和特殊的性质。目前发现除材料组分外,空间结构也是影响异质结构总体性质的重要因素。尽管诸如干法转移和气相生长的固相法能够将原始或高度结晶的二维晶体制备出空间可控的异质结构,但是它们在很大程度上受限于低产率和高成本的缺点。相比之下,液相法虽然产物质量相对较低,但更适用于大规模生产功能性异质结构。然而,如何对组分的三维空间布局进行精确控制仍是目前液相法亟待解决的问题。在这篇综述中,我们介绍了通过湿化学法制备二维异质结构的最新进展,聚焦于对二维异质结构空间布局的控制。在本文的末尾,我们还讨论了此领域面临的挑战和潜在的机遇。
MSC2000:
刘强,王晓珊,王加亮,黄晓. 基于液相法二维异质结的空间结构可控制备[J]. 物理化学学报, 2019, 35(10): 1099-1111.
Qiang LIU,Xiaoshan WANG,Jialiang WANG,Xiao HUANG. Spatially Controlled Two-dimensional Heterostructures via Solution-phase Growth[J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1099-1111.
Table 1
Examples of previously reported four types of 2D heterostructures prepared in solution."
Type | Example | Reference |
2D crystals on a larger 2D template | Au/GO CaIn2S4/g-C3N4 CuS/TiS2 SnSe/GeSe | |
Vertical heterostructure | Sn0.5W0.5S2/SnS2 PbSe/Bi2Se3 | |
Lateral heterostructure | CdSe/CdTe Cu1.81S@IrxSy 1T/2H Mo1−xWxS2 amorphous/crystalline Pd | |
Core-shell heterostructure | Ag@Au Ag@Au Pd@PtNi PtPb/Pt PbS/CdS Bi2Se3@Bi2Te3@Bi2Se3 |
Fig 2
(a) High resolution transmission electron microscopy (HRTEM) image of the 30% CaIn2S4/g-C3N4 hybrid. (b) Transmission electron microscopy (TEM) image of the CaIn2S4/g-C3N4 heterostructure obtained at content of 40% CaIn2S4. (c) Comparison of the photocatalytic H2 production activity under visible light irradiation (triggered by 12 W ultraviolet light-emitting diodes (UV-LED light)). (d) TEM image of CuS nanoplates epitaxially grown on a TiS2 nanosheet. Inset: photograph of CuS-TiS2 solution. (e) The selected area electron diffraction (SAED) pattern of CuS–TiS2 with the electron beam perpendicular to the basal plane of TiS2 nanosheet. (f) Cycling performance of the CuS-TiS2 electrode at various current densities. (a–c) Reprinted with permission from Ref. 55. (d–f) Reprinted with permission from Ref. 56."
Fig 3
(a) Schematic illustration of the formation process of Sn0.5W0.5S2/SnS2 heterostructures. SnS2 nanoplates and Sn0.17WO3 nanorods formed together during the initial 12 h. After that the Sn0.17WO3 nanorods began to decompose (step 1), providing additional W and Sn ions for Sn0.5W0.5S2 nanosheets to grow on the surfaces of the SnS2 nanoplates (step 2). (b) Scanning electron microscope (SEM) image of as-prepared Sn0.5W0.5S2/SnS2 heterostructures. Inset: size distribution of Sn0.5W.5S2/SnS2 heterostructures. (c) Top-view TEM image of typical Sn0.5W0.5S2/SnS2 heterostructures. Inset: photograph of a solution of Sn0.5W0.5S2/SnS2 heterostructures showing the Tyndall effect. (d) Side-view TEM image of a typical Sn0.5W0.5S2/SnS2 heterostructure, revealing Sn0.5W0.5S2 nanosheets grown on both the top and bottom basal faces of a SnS2 nanoplate. (e) I–V curves measured with tunneling atomic force microscopy (TUNA) for a Sn0.5W0.5S2/SnS2 heterostructure, under a constant force and an applied bias voltage that was linearly ramped down. (f) Response–recovery curves of a typical chemiresistive sensor fabricated from Sn0.5W0.5S2/SnS2 heterostructures in response to acetone gas with increasing concentrations. Inset: zoom-in response of the sensor towards 0.24 and 0.48 mg•m-3 acetone. Reprinted with permission from Ref. 36. "
Fig 4
(a) Schematic illustration for the symmetry-mismatched epitaxial growth of PbSe crystal on Bi2Se3 nanoplate. (b) Top-view TEM analysis of the interface of the PbSe/Bi2Se3 and pristine Bi2Se3 region as indicated by a blue dashed line. (c) Atomic structure with Bi2Se3 (0001) parallel to PbSe (001), (011), and (111) after energy relaxation. The table shows the interfacial energy, bond length, and dangling bond density for each type of interface. (d) The electrical conductivity σ and (e) thermal conductivity κ of pristine Bi2Se3 nanoplate and PbSe/Bi2Se3 heterostructure. 1 Å = 0.1 nm. Reprinted with permission from Ref. 39."
Fig 5
(a) Atomic-resolution high-angle annular dark-field scanning TEM (HAADF-STEM) image of a single CdSe/CdTe core/crown nanoplate, with green and blue lines showing the energy dispersive X-ray spectroscopy (EDX) probe positions. The compositions in selenium and tellurium, normalized to the total anionic composition, are reported in the graphs at the right. (b) Schematic representation of band alignment in CdSe/CdTe semiconductors showing the indirect charge recombination. Energy values refer to 4 monolayer (ML) thick CdSe/CdTe core/crown nanoplates. (c) Absorption, photoluminescence (PL), and PL excitation (PLE) spectra normalized at the first exciton peak for 4 ML thick (top) CdTe nanoplatelets (NPLs), (middle) CdSe NPLs, and (bottom) CdSe/CdTe core/crown NPLs. (d) PL decays and associated lifetimes of CdSe/CdTe core/ crown NPLs. Reprinted with permission from Ref. 58."
Fig 6
(a) TEM image, (b) line profile analysis, and (c) corresponding elemental mapping analysis of Cu1.81S@IrxSy. Colors indicate Ir (cyan), Cu (purple), and S (yellow), respectively. (d) Schematic illustration of Asymmetric Cation Exchange. (e) and (g) are the TEM image of {Au2S-Cu1.81S}@IrxSy nanostructure and {Pd2S-Cu1.81S}@IrxSy nanostructure, respectively. (f) and (h) are the corresponding elemental mapping analysis (EDS) of {Au2S-Cu1.81S}@IrxSy nanostructure and {Pd2S-Cu1.81S}@IrxSy nanostructure, respectively. Reprinted with permission from Ref. 59."
Fig 7
(a) Cs-corrected high resolution scanning TEM (STEM) image of a thin Mo1-xWxS2 layer, revealing both 2H and 1T phase domains. The red and blue squares represent the 2H and 1T structures, respectively. (b) Top: Inverse FFT image of the area highlighted in the red square in (a), showing the 2H lattice structure. Bottom: The brightness profile along the red line. (c) Top: Inverse fast Fourier transform (FFT) image of the area highlighted in the blue square in (a), showing the 1T lattice structure. Bottom: The brightness profile along the blue line. (d) Structure models of (top) 2H and (bottom) 1T structures. The blue, purple and yellow balls represent W, Mo and S atoms, respectively. (e) Normalized resistance changes of a typical chemoreceptive sensor fabricated from Mo0.87W0.13S2 (∼10% 1T) in response to acetone gas with increasing concentrations. (f) Normalized change of resistance of different sensors at various acetone concentrations. Reprinted with permission from Ref. 50."
Fig 8
(a) Bright-field TEM image of fcc Au@Ag square sheets on GO surface prepared by coating Ag on hcp Au square sheets with ascorbic acid as the reductant. (b) High-resolution HAADF-STEM image and the corresponding STEM-EDS elemental mapping of the cross-section of a typical fcc Au@Ag square sheet, revealing the Ag shell (green) and Au core (red). (c) Schematic illustration for the phase transformation of hcp Au square sheets. (d) EELS spectra acquired from Au@Ag square sheet on GO (excited next to the corner and edge of an Au@Ag square sheet) and GO. Inset: the corresponding bright-field STEM image of the measured Au@Ag square sheet on GO, in which the positions of the electron beam are marked (scale bar, 20 nm). Reprinted with permission from Ref. 62."
Fig 9
(a) Atomic-resolution HAADF-STEM and (b) EDX mapping images of the planar Pd@PtNi nanoplates, (c) Current-time (I–t) curves for methanol oxidation reaction (MOR) at 0.85 V for 1500 s. (d) The high-resolution (HAADF) image and (e) the schematic atom models of PtPb/Pt core/shell nanoplates. (f) ORR polarization curves and, inset in (f) is the cyclic voltammograms (CVs) of different catalysts in 0.1 mol·L?1 HClO4 solution at a sweep rate of 50 mV·s?1."
Fig 10
(a) Scheme showing the process of cation exchange for the PbS/CdS structure. (b) HRTEM image showing sharp interfaces between the PbS core and the CdS shell. (c) photoluminescence lifetimes of the PbS and PbS/CdS core/shell heterostructure. (d) Typical transmission electron micrographs obtained from the nanoplates whose assembly is outlined in (e). The areas enclosed in red dotted line show Moiré patterns. The scale bar is 100 nm. (e) Evolution of the seed Bi2Se3 (BS) nanoplates into core-shell, double-shell, and multishell bismuth chalcogenide nanoplates Bi2Se3@Bi2Te3@ Bi2Se3@ Bi2Te3 (BS@BT@BS@BT). (f) The dimensionless thermoelectric figure of merit (ZT) of the pellets made of BS, BS2BT8, and BS1BT9. Inset: A photograph of the sintered cylinder-shaped pellet sample prepared by spark plasma sintering. (a–c) Reprinted with permission from Ref.65. (d–f) Reprinted with permission from Ref. 66."
1 |
Rao C. N. ; Sood A. K. ; Subrahmanyam K. S. ; Govindaraj A. Angew. Chem. Int. Ed. 2009, 48, 7752.
doi: 10.1002/anie.200901678 |
2 |
Georgakilas V. ; Otyepka M. ; Bourlinos A. B. ; Chandra V. ; Kim N. ; Kemp K. C. ; Hobza P. ; Zboril R. ; Kim K. S. Chem. Rev. 2012, 112, 6156.
doi: 10.1021/cr3000412 |
3 |
Wang S. L. ; Li J. ; Wang S. ; Wu J. E. ; Wong T. I. ; Foo M. L. ; Chen W. ; Wu K. ; Xu G. Q. ACS Catal. 2017, 7, 6892.
doi: 10.1021/acscatal.7b02331 |
4 |
Azam A. ; Kim J. ; Park J. ; Novak T. G. ; Tiwari A. P. ; Song S. H. ; Kim B. ; Jeon S. Nano Lett. 2018, 18, 5646.
doi: 10.1021/acs.nanolett.8b02150 |
5 |
Li W. ; Da P. ; Zhang Y. ; Wang Y. ; Lin X. ; Gong X. ; Zheng G. ACS Nano 2014, 8, 11770.
doi: 10.1021/nn5053684 |
6 |
Yu J. H. ; Lee H. R. ; Hong S. S. ; Kong D. ; Lee H. W. ; Wang H. ; Xiong F. ; Wang S. ; Cui Y. Nano Lett. 2015, 15, 1031.
doi: 10.1021/nl503897h |
7 |
Lin X. ; Liu Y. ; Wang K. ; Wei C. ; Zhang W. ; Yan Y. ; Li Y. J. ; Yao J. ; Zhao Y. S. ACS Nano 2018, 12, 689.
doi: 10.1021/acsnano.7b07823 |
8 |
Wang H. ; Zou D. C. Acta Phys.-Chim. Sin. 2017, 33, 1027.
doi: 10.3866/PKU.WHXB201702081 |
王辉; 邹德春. 物理化学学报, 2017, 33, 1027.
doi: 10.3866/PKU.WHXB201702081 |
|
9 |
Van Druenen M. ; Davitt F. ; Collins T. ; Glynn C. ; O'Dwyer C. ; Holmes J. D. ; Collins G. Chem. Mater. 2018, 30, 4667.
doi: 10.1021/acs.chemmater.8b01306 |
10 |
Song L. ; Ci L. ; Lu H. ; Sorokin P. B. ; Jin C. ; Ni J. ; Kvashnin A. G. ; Kvashnin D. G. ; Lou J. ; Yakobson B. I. ; et al Nano Lett. 2010, 10, 3209.
doi: 10.1021/nl1022139 |
11 |
Ling X. ; Fang W. ; Lee Y. H. ; Araujo P. T. ; Zhang X. ; Rodriguez-Nieva J. F. ; Lin Y. ; Zhang J. ; Kong J. ; Dresselhaus M. S. Nano Lett. 2014, 14, 3033.
doi: 10.1021/nl404610c |
12 |
Chen Z. ; Forman A. J. ; Jaramillo T. F. J. Phys. Chem. C 2013, 117, 9713.
doi: 10.1021/jp311375k |
13 |
Henck H. ; Pierucci D. ; Fugallo G. ; Avila J. ; Cassabois G. ; Dappe Y. J. ; Silly M. G. ; Chen C. ; Gil B. ; Gatti M. ; et al Phys. Rev. B 2017, 95, 085410.
doi: 10.1103/PhysRevB.95.085410 |
14 |
Banszerus L. ; Schmitz M. ; Engels S. ; Dauber J. ; Oellers M. ; Haupt F. ; Watanabe K. ; Taniguchi T. ; Beschoten B. ; Stampfer C. Sci. Adv. 2015, 1, 1.
doi: 10.1126/sciadv.1500222 |
15 |
Novoselov K. S. ; Fal'ko V. I. ; Colombo L. ; Gellert P. R. ; Schwab M. G. ; Kim K. Nature 2012, 490, 192.
doi: 10.1038/nature11458 |
16 |
Lv R. ; Robinson J. A. ; Schaak R. E. ; Sun D. ; Sun Y. ; Mallouk T. E. ; Terrones M. Acc. Chem. Res. 2015, 48, 56.
doi: 10.1021/ar5002846 |
17 |
Chhowalla M. ; Shin H. S. ; Eda G. ; Li L. J. ; Loh K. P. ; Zhang H. Nat. Chem. 2013, 5, 263.
doi: 10.1038/nchem.1589 |
18 |
Oh G. ; Kim J. S. ; Jeon J. H. ; Won E. ; Son J. W. ; Lee D. H. ; Kim C. K. ; Jang J. ; Lee T. ; et al ACS Nano 2015, 9, 7515.
doi: 10.1021/acsnano.5b02616 |
19 |
Miao J. ; Hu W. ; Guo N. ; Lu Z. ; Liu X. ; Liao L. ; Chen P. ; Jiang T. ; Wu S. ; Ho J. C. ; et al Small 2014, 11, 936.
doi: 10.1002/smll.201402312 |
20 |
Dean C. R. ; Young A. F. ; Meric I. ; Lee C. ; Wang L. ; Sorgenfrei S. ; Watanabe K. ; Taniguchi T. ; Kim P. ; Shepard K. L. ; et al Nat. Nanotechnol. 2010, 5, 722.
doi: 10.1038/nnano.2010.172 |
21 |
Gorbachev R. V. ; Geim A. K. ; Katsnelson M. I. ; Novoselov K. S. ; Tudorovskiy T. ; Grigorieva I. V. ; MacDonald A. H. ; Morozov S. V. ; Watanabe K. ; Taniguchi T. ; et al Nat. Phys. 2012, 8, 896.
doi: 10.1038/nphys2441 |
22 |
Britnell L. ; Gorbachev R. V. ; Jalil R. ; Belle B. D. ; Schedin F. ; Mishchenko A. ; Georgiou T. ; Katsnelson M. I. ; Eaves L. ; Morozov S. V. ; et al Science 2012, 335, 947.
doi: 10.1126/science.1218461 |
23 |
Suenaga K. ; Ji H. G. ; Lin Y. C. ; Vincent T. ; Maruyama M. ; Aji A. S. ; Shiratsuchi Y. ; Ding D. ; Kawahara K. ; Okada S. ; et al ACS Nano 2018, 12, 10032.
doi: 10.1021/acsnano.8b04612 |
24 |
Tongay S. ; Fan W. ; Kang J. ; Park J. ; Koldemir U. ; Suh J. ; Narang D. S. ; Liu K. ; Ji J. ; Li J. ; et al Nano Lett. 2014, 14, 3185.
doi: 10.1021/nl500515q |
25 |
Li M. Y. ; Shi Y. ; Cheng C. C. ; Lu L. S. ; Lin Y. C. ; Tang H. L. ; Tsai M. L. ; Chu C. W. ; Wei K. H. ; He J. H. ; et al Science 2015, 349, 524.
doi: 10.1126/science.aab4097 |
26 |
Fu L. ; Sun Y. ; Wu N. ; Mendes R. G. ; Chen L. ; Xu Z. ; Zhang T. ; Rümmeli M. H. ; Rellinghaus B. ; Pohl D. ; et al ACS Nano 2016, 10, 2063.
doi: 10.1021/acsnano.5b06254 |
27 |
Wang M. ; Jang S. K. ; Jang W. J. ; Kim M. ; Park S. Y. ; Kim S. W. ; Kahng S. J. ; Choi J. Y. ; Ruoff R. S. ; Song Y. J. ; et al Adv. Mater. 2013, 25, 2746.
doi: 10.1002/adma.201204904 |
28 |
Han S. ; Yang X. ; Zhu Y. ; Tan C. ; Zhang X. ; Chen J. ; Huang Y. ; Chen B. ; Luo Z. ; Ma Q. ; et al Angew. Chem. Int. Ed. 2017, 56, 10486.
doi: 10.1002/anie.201705617 |
29 |
Chen X. ; Huang Z. ; Ren X. ; Xu G. ; Zhou J. ; Tao Y. ; Qi X. ; Zhong J. ChemNanoMat 2018, 4, 373.
doi: 10.1002/cnma.201700392 |
30 |
Liu X. ; Wang P. ; Zhang Q. ; Huang B. ; Wang Z. ; Liu Y. ; Zheng Z. ; Dai Y. ; Qin X. ; Zhang X. Appl. Surf. Sci. 2018, 459, 422.
doi: 10.1016/j.apsusc.2018.08.024 |
31 |
Islam M. A. ; Kim J. H. ; Schropp A. ; Kalita H. ; Choudhary N. ; Weitzman D. ; Khondaker S. I. ; Oh K. H. ; Roy T. ; Chung H. S. ; et al Nano Lett. 2017, 17, 6157.
doi: 10.1021/acs.nanolett.7b02776 |
32 |
Geim A. K. ; Grigorieva I. V. Nature 2013, 499, 419.
doi: 10.1038/nature12385 |
33 |
Novoselov K. S. ; Mishchenko A. ; Carvalho A. ; Castro Neto A. H. Science 2016, 353, 6298.
doi: 10.1126/science.aac9439 |
34 |
Lim H. ; Yoon S. I. ; Kim G. ; Jang A. R. ; Shin H. S. Chem. Mater. 2014, 26, 4891.
doi: 10.1021/cm502170q |
35 |
Li H. ; Wu X. ; Liu H. ; Zheng B. ; Zhang Q. ; Zhu X. ; Wei Z. ; Zhuang X. ; Zhou H. ; Tang W. ; et al ACS Nano 2017, 11, 961.
doi: 10.1021/acsnano.6b07580 |
36 |
Wang X. ; Wang Z. ; Zhang J. ; Wang X. ; Zhang Z. ; Wang J. ; Zhu Z. ; Li Z. ; Liu Y. ; Hu X. ; et al Nat. Commun. 2018, 9, 3611.
doi: 10.1038/s41467-018-06053-z |
37 |
Gao T. ; Song X. ; Du H. ; Nie Y. ; Chen Y. ; Ji Q. ; Sun J. ; Yang Y. ; Zhang Y. ; Liu Z. Nat. Commun. 2015, 6, 6835.
doi: 10.1038/ncomms7835 |
38 |
Gong Y. ; Lin J. ; Wang X. ; Shi G. ; Lei S. ; Lin Z. ; Zou X. ; Ye G. ; Vajtai R. ; Yakobson B. I. ; et al Nat. Mater. 2014, 13, 1135.
doi: 10.1038/nmat4091 |
39 |
Lin Z. ; Yin A. ; Mao J. ; Xia Y. ; Kempf N. ; He Q. ; Wang Y. ; Chen C. Y. ; Zhang Y. ; Ozolins V. ; et al Sci. Adv. 2016, 2, 9.
doi: 10.1126/sciadv.1600993 |
40 |
Shi J. ; Liu M. ; Wen J. ; Ren X. ; Zhou X. ; Ji Q. ; Ma D. ; Zhang Y. ; Jin C. ; Chen H. ; et al Adv. Mater. 2015, 27, 7086.
doi: 10.1002/adma.201503342 |
41 |
Wang S. ; Wang X. ; Warner J. H. ACS Nano 2015, 9, 5246.
doi: 10.1021/acsnano.5b00655 |
42 |
Haigh S. J. ; Gholinia A. ; Jalil R. ; Romani S. ; Britnell L. ; Elias D. C. ; Novoselov K. S. ; Ponomarenko L. A. ; Geim A. K. ; Gorbachev R. Nat. Mater. 2012, 11, 764.
doi: 10.1038/nmat3386 |
43 |
Britnell L. ; Ribeiro R. M. ; Eckmann A. ; Jalil R. ; Belle B. D. ; Mishchenko A. ; Kim Y. J. ; Gorbachev R. V. ; Georgiou T. ; Morozov S. V. ; et al Science 2013, 340, 1311.
doi: 10.1126/science.1235547 |
44 |
Nourbakhsh A. ; Zubair A. ; Dresselhaus M. S. ; Palacios T. Nano Lett. 2016, 16, 1359.
doi: 10.1021/acs.nanolett.5b04791 |
45 |
Dean C. ; Young A. F. ; Wang L. ; Meric I. ; Lee G. H. ; Watanabe K. ; Taniguchi T. ; Shepard K. ; Kim P. ; Hone J. Solid State Commun. 2012, 152, 1275.
doi: 10.1016/j.ssc.2012.04.021 |
46 |
Tanaka T. ; Ito A. ; Tajima A. ; Rokuta E. ; Oshima C. Surf. Rev. Lett. 2003, 10, 721.
doi: 10.1142/S0218625X03005529 |
47 |
Liu Z. ; Song L. ; Zhao S. ; Huang J. ; Ma L. ; Zhang J. ; Lou J. ; Ajayan P. M. Nano Lett. 2011, 11, 2032.
doi: 10.1021/nl200464j |
48 |
Shi Y. ; Zhou W. ; Lu A. Y. ; Fang W. ; Lee Y. H. ; Hsu A. L. ; Kim S. M. ; Kim K. K. ; Yang H. Y. ; Li L. J. ; et al Nano Lett. 2012, 12, 2784.
doi: 10.1021/nl204562j |
49 |
Tan C. ; Chen J. ; Wu X. J. ; Zhang H. Nat. Rev. Mater. 2018, 3, 17089.
doi: 10.1038/natrevmats.2017.89 |
50 |
Yang K. ; Wang X. ; Li H. ; Chen B. ; Zhang X. ; Li S. ; Wang N. ; Zhang H. ; Huang X. ; Huang W. Nanoscale 2017, 9, 5102.
doi: 10.1039/c7nr01015j |
51 |
Kang J. ; Sangwan V. K. ; Wood J. D. ; Hersam M. C. Acc. Chem. Res. 2017, 50, 943.
doi: 10.1021/acs.accounts.6b00643 |
52 |
Kim T. H. ; Chung D. Y. ; Ku J. ; Song I. ; Sul S. ; Kim D. H. ; Cho K. S. ; Choi B. L. ; Min Kim J. ; Hwang S. ; et al Nat. Commun. 2013, 4, 2637.
doi: 10.1038/ncomms3637 |
53 |
Hu G. ; Kang J. ; Ng L. W. T. ; Zhu X. ; Howe R. C. T. ; Jones C. G. ; Hersam M. C. ; Hasan T. Chem. Soc. Rev. 2018, 47, 3265.
doi: 10.1039/c8cs00084k |
54 | Huang, X.; Li, S.; Huang, Y.; Wu, S.; Zhou, X.; Li, S.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Nat. Commun. 2011, 2, 292. doi: 10.1038/ncomms1291Zeng, Z.; Tan, C.; Huang, X.; Bao, S.; |
55 |
Jiang D. ; Li J. ; Xing C. ; Zhang Z. ; Meng S. ; Chen M. ACS Appl. Mater. Interfaces 2015, 7, 19234.
doi: 10.1021/acsami.5b05118 |
56 |
Tan C. ; Zeng Z. ; Huang X. ; Rui X. ; Wu X. J. ; Li B. ; Luo Z. ; Chen J. ; Chen B. ; Yan Q. ; et al Angew. Chem. Int. Ed. 2014, 54, 1841.
doi: 10.1002/anie.201410890 |
57 |
Sun D. ; Schaak R. E. Chem. Mater. 2017, 29, 817.
doi: 10.1021/acs.chemmater.6b04808 |
58 |
Pedetti S. ; Ithurria S. ; Heuclin H. ; Patriarche G. ; Dubertret B. J. Am. Chem. Soc. 2014, 136, 16430.
doi: 10.1021/ja509307m |
59 |
Park J. ; Park J. ; Lee J. ; Oh A. ; Baik H. ; Lee K. ACS Nano 2018, 12, 7996.
doi: 10.1021/acsnano.8b02752 |
60 |
Yang N. ; Cheng H. ; Liu X. ; Yun Q. ; Chen Y. ; Li B. ; Chen B. ; Zhang Z. ; Chen X. ; Lu Q. ; et al Adv. Mater. 2018, 30, 1803234.
doi: 10.1002/adma.201803234 |
61 |
Liu H. ; Liu T. ; Zhang L. ; Han L. ; Gao C. ; Yin Y. Adv. Funct. Mater. 2015, 25, 5435.
doi: 10.1002/adfm.201502366 |
62 |
Fan Z. ; Huang X. ; Han Y. ; Bosman M. ; Wang Q. ; Zhu Y. ; Liu Q. ; Li B. ; Zeng Z. ; Wu J. ; et al Nat. Commun. 2015, 6, 6571.
doi: 10.1038/ncomms7571 |
63 |
Yan Y. ; Shan H. ; Li G. ; Xiao F. ; Jiang Y. ; Yan Y. ; Jin C. ; Zhang H. ; Wu J. ; Yang D. Nano Lett. 2016, 16, 7999.
doi: 10.1021/acs.nanolett.6b04524 |
64 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. ; Wu T. ; Lu G. ; Ma J. Y. ; Su D. ; et al Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
65 |
Khan S. ; Jiang Z. ; Premathilka S. M. ; Antu A. ; Hu J. ; Voevodin A. A. ; Roland P. J. ; Ellingson R. J. ; Sun L. Chem. Mater. 2016, 28, 5342.
doi: 10.1021/acs.chemmater.6b01232 |
66 |
Min Y. ; Park G. ; Kim B. ; Giri A. ; Zeng J. ; Roh J. W. ; Kim S. I. ; Lee K. H. ; Jeong U. ACS Nano 2015, 9, 6843.
doi: 10.1021/nn507250r |
67 |
Zhang H. Energy Environ. Sci. 2014, 7, 797.
doi: 10.1039/c3ee42620c |
68 |
Huang X. ; Zeng Z. ; Bao S. ; Wang M. ; Qi X. ; Fan Z. ; Zhang H. Nat. Commun. 2013, 4, 1444.
doi: 10.1038/ncomms2472 |
69 |
Azizi A. ; Eichfeld S. ; Geschwind G. ; Zhang K. ; Jiang B. ; Mukherjee D. ; Hossain L. ; Piasecki A. F. ; Kabius B. ; Robinson J. A. ; et al ACS Nano 2015, 9, 4882.
doi: 10.1021/acsnano.5b01677 |
70 |
Li M. ; Zhu Y. ; Li T. ; Lin Y. ; Cai H. ; Li S. ; Ding H. ; Pan N. ; Wang X. Inorg. Chem. Front. 2018, 5, 1828.
doi: 10.1039/c8qi00251g |
71 |
Song X. ; Sun J. ; Qi Y. ; Gao T. ; Zhang Y. ; Liu Z. Adv. Energy Mater. 2016, 6, 1600541.
doi: 10.1002/aenm.201600541 |
72 |
Zhang Z. ; Ji X. ; Shi J. ; Zhou X. ; Zhang S. ; Hou Y. ; Qi Y. ; Fang Q. ; Ji Q. ; Zhang Y. ; et al ACS Nano 2017, 11, 4328.
doi: 10.1021/acsnano.7b01537 |
73 |
Li X. ; Basile L. ; Huang B. ; Ma C. ; Lee J. ; Vlassiouk I. V. ; Puretzky A. A. ; Lin M. W. ; Yoon M. ; Chi M. ; et al ACS Nano 2015, 9, 8078.
doi: 10.1021/acsnano.5b01943 |
74 |
Chen K. ; Wan X. ; Xie W. ; Wen J. ; Kang Z. ; Zeng X. ; Chen H. ; Xu J. Adv. Mater. 2015, 27, 6431.
doi: 10.1002/adma.201502375 |
75 |
Tao C. ; Guolin H. ; Liangzhi K. ; Chen W. ; Jianxin Z. Nanotechnology 2018, 29, 484003.
doi: 10.1088/1361-6528/aae0cf |
76 |
Naylor C. H. ; Parkin W. M. ; Gao Z. ; Berry J. ; Zhou S. ; Zhang Q. ; McClimon J. B. ; Tan L. Z. ; Kehayias C. E. ; Zhao M. Q. ; et al ACS Nano 2017, 11, 8619.
doi: 10.1021/acsnano.7b03828 |
77 |
Pandya R. ; Chen R. Y. S. ; Cheminal A. ; Dufour M. ; Richter J. M. ; Thomas T. H. ; Ahmed S. ; Sadhanala A. ; Booker E. P. ; Divitini G. ; et al J. Am. Chem. Soc. 2018, 140, 14097.
doi: 10.1021/jacs.8b05842 |
78 |
Acerce M. ; Voiry D. ; Chhowalla M. Nat. Nanotechnol. 2015, 10, 313.
doi: 10.1038/nnano.2015.40 |
79 |
Cho S. ; Kim S. ; Kim J. H. ; Zhao J. ; Seok J. ; Keum D. H. ; Baik J. ; Choe D. H. ; Chang K. J. ; Suenaga K. ; et al Science 2015, 349, 625.
doi: 10.1126/science.aab3175 |
80 |
Song S. ; Keum D. H. ; Cho S. ; Perello D. ; Kim Y. ; Lee Y. H. Nano Lett. 2016, 16, 188.
doi: 10.1021/acs.nanolett.5b03481 |
81 |
Rhodes D. ; Chenet D. A. ; Janicek B. E. ; Nyby C. ; Lin Y. ; Jin W. ; Edelberg D. ; Mannebach E. ; Finney N. ; Antony A. ; et al Nano Lett. 2017, 17, 1616.
doi: 10.1021/acs.nanolett.6b04814 |
82 |
Eda G. ; Fujita T. ; Yamaguchi H. ; Voiry D. ; Chen M. ; Chhowalla M. ACS Nano 2012, 6, 7311.
doi: 10.1021/nn302422x |
83 |
Tessier M. D. ; Mahler B. ; Nadal B. ; Heuclin H. ; Pedetti S. ; Dubertret B. Nano Lett. 2013, 13, 3321.
doi: 10.1021/nl401538n |
84 |
Mahler B. ; Nadal B. ; Bouet C. ; Patriarche G. ; Dubertret B. J. Am. Chem. Soc. 2012, 134, 18591.
doi: 10.1021/ja307944d |
85 |
Lu C. L. ; Prasad K. S. ; Wu H. L. ; Ho J. A. A. ; Huang M. H. J. Am. Chem. Soc. 2010, 132, 14546.
doi: 10.1021/ja105401p |
86 |
Reiss P. ; Bleuse J. ; Pron A. Nano Lett. 2002, 2, 781.
doi: 10.1021/nl025596y |
87 |
Habas S. E. ; Lee H. ; Radmilovic V. ; Somorjai G. A. ; Yang P. Nat. Mater. 2007, 6, 692.
doi: 10.1038/nmat1957 |
88 |
Niu Z. ; Cui F. ; Yu Y. ; Becknell N. ; Sun Y. ; Khanarian G. ; Kim D. ; Dou L. ; Dehestani A. ; Schierle-Arndt K. ; et al J. Am. Chem. Soc. 2017, 139, 7348.
doi: 10.1021/jacs.7b02884 |
89 |
Talapin D. V. ; Koeppe R. ; Götzinger S. ; Kornowski A. ; Lupton J. M. ; Rogach A. L. ; Benson O. ; Feldmann J. ; Weller H. Nano Lett. 2003, 3, 1677.
doi: 10.1021/nl034815s |
90 |
Fan Z. ; Zhu Y. ; Huang X. ; Han Y. ; Wang Q. ; Liu Q. ; Huang Y. ; Gan C. L. ; Zhang H. Angew. Chem. Int. Ed. 2015, 127, 5764.
doi: 10.1002/ange.201500993 |
91 |
Xia X. ; Wang Y. ; Ruditskiy A. ; Xia Y. Adv. Mater. 2013, 25, 6313.
doi: 10.1002/adma.201302820 |
92 |
Sun Y. ; Mayers B. T. ; Xia Y. Nano Lett. 2002, 2, 481.
doi: 10.1021/nl025531v |
93 |
Métraux G. S. ; Cao Y. C. ; Jin R. ; Mirkin C. A. Nano Lett. 2003, 3, 519.
doi: 10.1021/nl034097+ |
94 |
Li Y. ; Wang J. ; Zhou B. ; Wang F. ; Miao Y. ; Wei J. ; Zhang B. ; Zhang K. Phys. Chem. Chem. Phys. 2018, 20, 24109.
doi: 10.1039/c8cp04337j |
95 |
Dong L. ; Lou J. ; Shenoy V. B. ACS Nano 2017, 11, 8242.
doi: 10.1021/acsnano.7b03313 |
96 |
Li F. ; Wei W. ; Zhao P. ; Huang B. ; Dai Y. J. Phys. Chem. Lett. 2017, 8, 5959.
doi: 10.1021/acs.jpclett.7b02841 |
97 |
Wong J. ; Jariwala D. ; Tagliabue G. ; Tat K. ; Davoyan A. R. ; Sherrott M. C. ; Atwater H. A. ACS Nano 2017, 11, 7230.
doi: 10.1021/acsnano.7b03148 |
98 |
Patel M. ; Kim H. S. ; Kim J. Nanoscale 2017, 9, 15804.
doi: 10.1039/c7nr03370b |
99 |
Zhang X ; Shaoqing X. ; Haiyan N. ; Haoxin M. ; Xi W. ; Xiaofeng G. ; Kostya O. Nanotechnology 2018, 29, 455707.
doi: 10.1088/1361-6528/aaddc5 |
100 |
Butler S. Z. ; Hollen S. M. ; Cao L. ; Cui Y. ; Gupta J. A. ; Gutiérrez H. R. ; Heinz T. F. ; Hong S. S. ; Huang J. ; Ismach A. F. ; et al ACS Nano 2013, 7, 2898.
doi: 10.1021/nn400280c |
101 |
Wang L. ; Yang P. ; Liu Y. ; Fang X. ; Shi X. ; Wu S. ; Huang L. ; Li H. ; Huang X. ; Huang W. Nanoscale 2017, 9, 9997.
doi: 10.1039/c7nr03072j |
[1] | 张东凤, 牛丽亚, 郭林. 分级结构纳米材料的液相合成策略[J]. 物理化学学报, 2010, 26(11): 2865 -2876 . |
[2] | 刘晓芳, 李学强, 叶武龙, 周彬彬, 刘又年. 二茂铁-肽Fc-Gly-Pro-Arg(NO2)-OMe的合成及其与Cu(II)作用[J]. 物理化学学报, 2010, 26(09): 2381 -2386 . |
|