Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (6): 565-571    DOI: 10.3866/PKU.WHXB201805080
综述     
硼烯化学合成进展与展望
王琴,薛珉敏,张助华*()
Chemical Synthesis of Borophene: Progress and Prospective
Qin WANG,Minmin XUE,Zhuhua ZHANG*()
 全文: PDF(1361 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

硼烯是由硼原子构成的单原子层厚的二维材料,具有丰富的化学和物理性质。本文集中介绍近年来硼烯在合成方面的理论与实验研究进展,重点分析基底、生长温度、生长前驱物等因素对硼成核选择性的影响,探讨能够促进硼烯成核的潜在方法。进一步将分析硼烯生长机制及理论研究方法,以此展望通过在基底上化学气相沉积合成硼烯的可能途径。本文旨在促进大面积、高质量硼烯样品的制备以推动硼烯的实际应用。

关键词: 硼烯化学气相沉积材料合成理论模拟基底成核    
Abstract:

Borophene, a boron analogue of graphene, exhibits a rich variety of chemical and physical properties. Here, we provide an intensive overview of recent progress in theoretical modeling and experimental synthesis of borophene. In particular, we analyze the influence of substrate, growth temperature, and precursor on the selectivity of boron nucleation. While three-dimensional (3D) bulk boron is more stable than a two-dimensional (2D) boron sheet, the nucleation barrier determined by the growth process controls the formation of the material and it depends on the specific growth environment. Theoretical studies have shown that a metal substrate can play an important role in stabilizing 2D boron clusters over their 3D form, resulting in the kinetically favored growth of 2D boron on the substrate even though the 2D boron clusters will be overwhelmingly less stable than the 3D form with increasing cluster size. Ag and Cu substrates have proven to be particularly suitable for achieving this preference. Guided by theoretical works and perhaps original insights, experimentalists from two independent groups have successfully synthesized 2D boron sheets on silver substrates by depositing ultra-high purity boron onto a clean Ag (111) surface under high vacuum conditions. Moreover, the borophene samples were found to exhibit the same atomic structure previously predicted to be preferred on this substrate. Besides the substrate, the growth temperature is also key to the final product. When the temperature is too low, boron growth cannot overcome the nucleation barrier of the 2D structure. As a result, boron clusters or amorphous boron structures are likely to be formed. In contrast, an excessively high growth temperature will steer the growth to overcome the nucleation barrier of 3D boron, possibly yielding boron nanofilms with finite thickness. Therefore, the growth temperature needs to be carefully controlled, so that the free energy of boron growth will be located between the nucleation barriers of the 3D and 2D forms. Some impurity elements found in synthetic source materials, such as hydrogen and oxygen, can also impact boron nucleation. The existence of these elements may alter the competition between 2D and 3D structures during the nucleation process. More importantly, hydrogen and oxygen can passivate the dangling bonds on the surface of a 3D boron structure, lowering its surface energy, and therefore, impairing the nucleation of 2D boron structures. At present, molecular beam epitaxy (MBE) is the only method with which borophene has been successfully synthesized. Yet this method is very expensive, suffers from low yield, and is constrained to small sample sizes. Thus, exploring the growth of borophene via chemical vapor deposition (CVD) on different substrates is critically important for realizing the great potential of borophene in various applications. By discussing possible growth conditions and atomistic mechanisms of borophene nucleation as well as theoretical methods for modeling and simulations, we suggest prospects for chemical vapor deposition growth of borophene on selected substrates. This work aims to offer useful guidance for chemical synthesis of large-area, high-quality borophenes and promote their practical applications.

Key words: Borophene    Chemical vapor deposition    Materials synthesis    Theoretical modeling    Substrate    Nucleation
收稿日期: 2018-05-28 出版日期: 2018-07-06
中图分类号:  O641  
基金资助: 中央高校基本科研业务费专项资金(NE2018002)
通讯作者: 张助华     E-mail: chuwazhang@nuaa.edu.cn
作者简介: 张助华,1983年生。本科和博士均就读于南京航空航天大学。现任职于南京航空航天大学。主要研究方向为低维材料力学,低维材料理论与模拟
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王琴
薛珉敏
张助华

引用本文:

王琴,薛珉敏,张助华. 硼烯化学合成进展与展望[J]. 物理化学学报, 2019, 35(6): 565-571, 10.3866/PKU.WHXB201805080

Qin WANG,Minmin XUE,Zhuhua ZHANG. Chemical Synthesis of Borophene: Progress and Prospective. Acta Phys. -Chim. Sin., 2019, 35(6): 565-571, 10.3866/PKU.WHXB201805080.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201805080        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I6/565

图1  碳化学与硼化学的类似性
图2  二维硼烯的理论研究与实验合成
图3  硼烯成核选择性
1 Mannix A. J. ; Kiraly B. ; Hersam M. C. ; Guisinger N. P. Nat. Rev. Chem. 2017, 1, 0014.
doi: 10.1038/s41570-016-0014
2 Molle A. ; Goldberger J. ; Houssa M. ; Xu Y. ; Zhang S. C. ; Akinwande D. Nat. Mater. 2017, 16, 163.
doi: 10.1038/NMAT4802
3 Oganov A. R. ; Solozhenko V. L. J. Superhard Mater. 2009, 31, 285.
doi: 10.3103/S1063457609050013
4 Huang W. ; Sergeeva A. P. ; Zhai H. J. ; Averkiev B. B. ; Wang L. S. ; Boldyrev A. I. Nat. Chem. 2010, 2, 202.
doi: 10.1038/NCHEM.534
5 Sergeeva A. P. ; Popov I. A. ; Piazza Z. A. ; Li W. L. ; Romanescu C. ; Wang L. S. ; Boldyrev A. I. Acc. Chem. Res. 2014, 2, 1349.
doi: 10.1021/ar400310g
6 Zhai H. J. ; Zhao Y. F. ; Li W. L. ; Chen Q. ; Bai H. ; Hu H. S. ; Piazza Z. A. ; Tian W. J. ; Lu H. G. ; Wu Y. B. ; et al Nat. Chem. 2014, 6, 727.
doi: 10.1038/NCHEM.1999
7 Ciuparu D. ; Klie R. F. ; Zhu Y. M. ; Pfefferle L. J. Phys. Chem. B 2004, 108, 3967.
doi: 10.1021/jp049301b
8 Liu F. ; Shen C. M. ; Su Z. J. ; Ding X. L. ; Deng S. Z. ; Chen J. ; Xu N. S. ; Gao H. J. J. Mater. Chem. 2010, 20, 2197.
doi: 10.1039/b919260c
9 Tai G. A. ; Hu T. S. ; Zhou Y. G. ; Wang X. F. ; Kong J. Z. ; Zeng T. ; You Y. C. ; Wang Q. Angew. Chem. Int. Ed. 2015, 54, 15473.
doi: 10.1002/anie.201509285
10 Sun X. ; Liu X. F. ; Yin J. ; Yu J. ; Li Y. ; Hang Y. ; Zhou X. C. ; Yu M. L. ; Li J. D. ; Tai G. A. ; et al Adv. Funct. Mater. 2017, 27, 1603300.
doi: 10.1002/adfm.201603300
11 Mannix A. J. ; Zhou X. F. ; Kiraly B. ; Wood J. D. ; Alducin D. ; Myers B. D. ; Liu X. L. ; Fisher B. L. ; Santiago U. ; Guest J. R. ; et al Science 2015, 350, 1513.
doi: 10.1126/science.aad1080
12 Feng B. J. ; Zhang J. ; Zhong Q. ; Li W. B. ; Li S. ; Li H. ; Cheng P. ; Meng S. ; Chen L. ; Wu K. H. Nat. Chem. 2016, 8, 563.
doi: 10.1038/NCHEM.2491
13 Zhang Z. H. ; Penev E. S. ; Yakobson B. I. Chem. Soc. Rev. 2017, 46, 6746.
doi: 10.1039/c7cs00261k
14 Feng B. J. ; Sugino O. ; Liu R. Y. ; Zhang J. ; Yukawa R. ; Kawamura M. ; Iimori T. ; Kim H. ; Hasegawa Y. ; Li H. ; et al Phys. Rev. Lett. 2017, 118, 096401.
doi: 10.1103/PhysRevLett.118.096401
15 Huang Y. F. ; Shirodkar S. N. ; Yakobson B. I. J. Am. Chem. Soc. 2017, 139, 17181.
doi: 10.1021/jacs.7b10329
16 Zhang Z. H. ; Yang Y. ; Penev E. S. ; Yakobson B. I. Adv. Funct. Mater. 2017, 27, 1605059.
doi: 10.1002/adfm.201605059
17 Boustani I. ; Quandt A. ; Hernandez E. ; Rubio A. J. Chem. Phys. 1999, 110, 3176.
doi: 10.1063/1.477976
18 Boustani I. Phys. Rev. B 1997, 55, 16426.
doi: 10.1103/PhysRevB.55.16426
19 Yang X. B. ; Ding Y. ; Ni J. Phys. Rev. B 2008, 77, 041402.
doi: 10.1103/PhysRevB.77.041402
20 Tang H. ; Ismail-Beigi S. Phys. Rev. Lett. 2007, 99, 115501.
doi: 10.1103/PhysRevLett.99.115501
21 Szwacki N. G. ; Sadrzadeh A. ; Yakobson B. I. Phys. Rev. Lett. 2007, 98, 166804.
doi: 10.1103/PhysRevLett.98.166804
22 Penev E. S. ; Bhowmick S. ; Sadrzadeh A. ; Yakobson B. I. Nano Lett. 2012, 12, 2441.
doi: 10.1021/nl3004754
23 Wu X. ; Dai J. ; Zhao Y. ; Zhuo Z. ; Yang J. ; Zeng X. C. ACS Nano 2012, 6, 7443.
doi: 10.1021/nn302696v
24 Lu H. ; Mu Y. ; Bai H. ; Chen Q. ; Li S. J. Chem. Phys. 2013, 138, 024701.
doi: 10.1063/1.4774082
25 Yu X. ; Li L. ; Xu X. ; Tang C. J. Phys. Chem. C 2012, 116, 20075.
doi: 10.1021/jp305545z
26 Xu S. ; Li X. ; Zhao Y. ; Liao J. ; Xu W. ; Yang X. ; Xu H. J. Am. Chem. Soc. 2017, 139, 17233.
doi: 10.1021/jacs.7b08680
27 Zhou X. F. ; Dong X. ; Oganov A. R. ; Zhu Q. ; Tian Y. J. ; Wang H. T. Phys. Rev. Lett. 2014, 112, 085502.
doi: 10.1103/PhysRevLett.112.085502
28 Ma F. ; Jiao Y. ; Gao G. ; Gu Y. ; Bilic A. ; Chen Z. ; Du A. Nano Lett. 2016, 16, 3022.
doi: 10.1021/acs.nanolett.5b05292
29 Liu Y. ; Penev E. S. ; Yakobson B. I. Angew. Chem. Int. Ed. 2013, 52, 3156.
doi: 10.1002/anie.201207972
30 Liu H. S. ; Gao J. F. ; Zhao J. J. Sci. Rep. 2013, 3, 3238.
doi: 10.1038/srep03238
31 Zhang Z. H. ; Yang Y. ; Gao G. Y. ; Yakobson B. I. Angew. Chem. Int. Ed. 2015, 54, 13022.
doi: 10.1002/anie.201505425
32 Meng X. M. ; Hu J. Q. ; Jiang Y. ; Lee C. S. ; Lee S. T. Chem. Phys. Lett. 2003, 370, 825.
doi: 10.1016/S0009-2614(03)00202-1
33 Cao L. M. ; Zhang Z. ; Sun L. L. ; Gao C. X. ; He M. ; Wang Y. Q. ; Li Y. C. ; Zhang X. Y. ; Li G. ; Zhang J. ; et al Adv. Mater. 2001, 13, 1701.
doi: 10.1002/1521-4095(200111)13:22<1701::AID-ADMA1701>3.0.CO;2-Q
34 Cao L. M. ; Hahn K. ; Wang Y. Q. ; Scheu C. ; Zhang Z. ; Gao C. X. ; Li Y. C. ; Zhang X. Y. ; Sun L. L. ; Wang W. K. ; et al Adv. Mater. 2002, 14, 1294.
doi: 10.1002/1521-4095(20020916)14:18<1294::AID-ADMA1294>3.0.CO;2-#
35 Ni H. ; Li X. D. J. Nano Res. 2008, 1, 10.
doi: 10.4028/www.scientific.net/JNanoR.1.10
36 Xu J. Q. ; Chang Y. Y. ; Gan L. ; Ma Y. ; Zhai T. Y. Adv. Sci. 2015, 2, 1500023.
doi: 10.1002/advs.201500023
37 Tian J. F. ; Xu Z. C. ; Shen C. M. ; Liu F. ; Xu N. S. ; Gao H. J. Nanoscale 2010, 2, 1375.
doi: 10.1039/c0nr00051e
38 Yang J. K. ; Yang Y. ; Waltermire S. W. ; Wu X. X. ; Zhang H. T. ; Gutu T. ; Jiang Y. F. ; Chen Y. F. ; Zinn A. A. ; Prasher R. ; et al Nat. Nanotechnol. 2012, 7, 91.
doi: 10.1038/NNANO.2011.216
39 Zhong Q. ; Kong L. J. ; Gou J. ; Li W. B. ; Sheng S. X. ; Yang S. ; Cheng P. ; Li H. ; Wu K. H. ; Chen L. Phys. Rev. Mater. 2017, 1, 021001.
doi: 10.1103/PhysRevMaterials.1.021001
40 Zhang Z. H. ; Mannix A. J. ; Hu Z. L. ; Kiraly B. ; Guisinger N. P. ; Hersam M. C. ; Yakobson B. I. Nano Lett. 2016, 16, 6622.
doi: 10.1021/acs.nanolett.6b03349
41 Shirodkar S. N. ; Penev E. S. ; Yakobson B. I. Sci. Bull. 2018, 63, 270.
doi: 10.1016/j.scib.2018.02.019
42 Li W. B. ; Kong L. J. ; Chen C. Y. ; Gou J. ; Sheng S. X. ; Zhang W. F. ; Li H. ; Chen L. ; Cheng P. ; Wu K. H. Sci. Bull. 2018, 63, 282.
doi: 10.1016/j.scib.2018.02.006
43 N?rskov J. K. ; Bligaard T. ; Rossmeisl J. ; Christensen C. H. Nat. Chem. 2009, 1, 37.
doi: 10.1038/nchem.121
44 Zhang Z. ; Penev E. S. ; Yakobson B. I. Nat. Chem. 2016, 8, 525.
doi: 10.1038/nchem.2521
45 Xu S. G. ; Zhao Y. J. ; Liao J. H. ; Yang X. B. ; Xu H. Nano Res. 2016, 9, 2616.
doi: 10.1007/s12274-016-1148-0
46 Tibbetts G. G. J. Cryst. Growth 1984, 66, 632.
doi: 10.1016/0022-0248(84)90163-5
47 Ding F. ; Harutyunyan A. R. ; Yakobson B. I. Proc. Nat. Acad. Sci. USA 2009, 106, 2506.
doi: 10.1073/pnas.0811946106
48 Artyukhov V. I. ; Liu Y. Y. ; Yakobson B. I. Proc. Natl. Acad. Sci. USA 2012, 109, 15136.
doi: 10.1073/pnas.1207519109
49 Zhang Z. H. ; Liu Y. Y. ; Yang Y. ; Yakobson B. I. Nano Lett. 2016, 16, 1398.
doi: 10.1021/acs.nanolett.5b04874
[1] 刘芳,张鲁凤,董倩,陈卓. 小尺寸金石墨纳米颗粒的合成与表征[J]. 物理化学学报, 2019, 35(6): 651-656.
[2] 李松,刘夫锋,余林玲,赵彦娇,董晓燕. 硫黄素T对淀粉样β-蛋白质40聚集成核动力学的双重影响[J]. 物理化学学报, 2016, 32(6): 1391-1396.
[3] 刘庆彬,蔚翠,何泽召,王晶晶,李佳芦,伟立,冯志红. 蓝宝石衬底上化学气相沉积法生长石墨烯[J]. 物理化学学报, 2016, 32(3): 787-792.
[4] 陈旭东,陈召龙,孙靖宇,张艳锋,刘忠范. 石墨烯玻璃:玻璃表面上石墨烯的直接生长[J]. 物理化学学报, 2016, 32(1): 14-27.
[5] 吴小英,杨丽坤,闫慧,杨防祖,田中群,周绍民. n型半导体硅电极表面Au的电化学成核机理[J]. 物理化学学报, 2015, 31(9): 1708-1714.
[6] 乔治, 解新建, 薛俊明, 刘辉, 梁李敏, 郝秋艳, 刘彩池. nc-Si:H/c-Si硅异质结太阳电池中本征硅薄膜钝化层的优化[J]. 物理化学学报, 2015, 31(6): 1207-1214.
[7] 吴晓敏, 袁晓辉, 薛书蕾, 查岭生, 王光利, 张海军. 模型多肽Trp-Cage折叠形成机制的研究进展[J]. 物理化学学报, 2013, 29(09): 1842-1850.
[8] 邓杰, 陶杰, 吴涛, 陶海军. 稀碱溶液中水热法制备柔性TiO2纳米须薄膜的生长机制及表征[J]. 物理化学学报, 2013, 29(04): 858-866.
[9] 常大磊, 李小松, 赵天亮, 朱爱民. 大气压射频等离子体化学气相沉积TiO2体系的发射光谱诊断[J]. 物理化学学报, 2013, 29(03): 625-630.
[10] 张艳锋, 高腾, 张玉, 刘忠范. 金属衬底上石墨烯的控制生长和微观形貌的STM表征[J]. 物理化学学报, 2012, 28(10): 2456-2464.
[11] 蒋倩, 储伟, 孙文晶, 刘凤嗣, 薛英. 甲烷与含氮有机杂环化合物吸附作用的DFT研究[J]. 物理化学学报, 2012, 28(05): 1101-1106.
[12] 王喜文, 姜芳婷, 索全伶, 方玉珠, 路勇. 不同碳源催化化学气相沉积制备自支撑C/Ni-Fiber复合电极材料的电容脱盐性能[J]. 物理化学学报, 2011, 27(11): 2605-2612.
[13] 王建涛, 张晓宏, 王辉, 欧雪梅. 具有超疏水表面的硅/二氧化硅层次结构薄膜[J]. 物理化学学报, 2011, 27(09): 2233-2238.
[14] 徐浩, 陆昉, 傅正文. 磁控溅射中靶-基底距离与Si共掺对ZnO:Al薄膜性质的影响[J]. 物理化学学报, 2011, 27(05): 1232-1238.
[15] 彭跃华, 周海青, 刘湘衡, 何熊武, 赵丁, 海阔, 周伟昌, 袁华军, 唐东升. 化学气相沉积法制备Sn2S3一维纳米结构阵列[J]. 物理化学学报, 2011, 27(05): 1249-1253.