物理化学学报 >> 2020, Vol. 36 >> Issue (10): 1910005.doi: 10.3866/PKU.WHXB201910005
所属专题: 胶体与界面化学前沿
收稿日期:
2019-10-07
录用日期:
2019-12-31
发布日期:
2020-06-11
通讯作者:
魏涛
E-mail:tongai@cuhk.edu.hk
作者简介:
To NGAI now is Professor in the Department of Chemistry, Assistant Dean (Research) of Science at the Chinese University of Hong Kong (CUHK), and Fellow of the Royal Society of Chemistry (FRSC). He received his B.Sc. in chemistry at CUHK in 1999. In 2003, he obtained the Ph.D at the same university, where he worked on light scattering and polymer interaction in solution. He moved to BASF (Ludwigshafen, Germany) in 2003 as the postdoctoral fellow for two years, working on colloids and surface chemistry. After a short postdoctoral training in the Chemistry Department at the University of Minnesota in 2005, he joined the Chemistry Department at CUHK in 2006 as a research assistant professor. He has been appointed as an assistant professor in 2008, and early promoted to associate professor in 2012. In 2017, he was promoted to Professor. His current research interests center around the colloids, surface chemistry, polymers and soft matter
基金资助:
Guanqing Sun1, Zonglin Yi2, To Ngai1,2,*()
Received:
2019-10-07
Accepted:
2019-12-31
Published:
2020-06-11
Contact:
To Ngai
E-mail:tongai@cuhk.edu.hk
Supported by:
摘要:
胶体颗粒稳定的分散体系如乳液、泡沫和气泡等体系在众多研究领域吸引了越来越多的关注。胶体颗粒的吸附机理、油-水界面和气-水界面的胶体颗粒稳定机制以及吸附于界面的胶体颗粒乳液相互作用对这些分散体系的实际应用至关重要。虽然在相关方面已经有众多研究,胶体颗粒对界面的稳定作用和胶体颗粒之间的相互作用仍然存在很多问题,值得进一步研究。在本文中,我们首先系统地回顾了历来胶体颗粒稳定的乳液和气泡体系的研究,并概括地介绍了在该领域内较为重要和较为成熟的研究进展,包括乳液、泡沫和液体弹珠等。人们早已认识到胶体颗粒在界面的吸附现象,在学术上的探讨也已经超过一个世纪。上世纪八十年代有研究者提出了定量的理论模型来描述这种现象。该理论从自由能降低的角度解释了为何胶体颗粒会吸附到界面上,并且能将胶体颗粒对两相的浸润性与乳液和泡沫体系的稳定性联系起来。在乳液稳定性方面,有大量的研究支撑了上述理论;研究者们制备了具有响应性的乳液体系,如pH/温度响应性。之后,我们讨论了吸附在界面的胶体颗粒的相互作用的最新进展,并提出了该领域内尚未解决的问题。由于需要精密的仪器和熟练的操作技巧,胶体颗粒在界面的相互作用实验和理论研究之间还存在巨大的差距。虽然弯曲界面更为常见,实验上通常采用水平界面作为模型界面来研究胶体颗粒在界面的相互作用。胶体颗粒在界面的引入会由摩擦导致电荷存在,这很可能是长程静电相互作用的原因。最后,我们介绍了胶体颗粒稳定的分散体系的在包埋、食品、控释和干水的制备等领域的应用。使用乳液液滴作为平台,是制备包埋体系的主要手段之一。吸附在界面的胶体颗粒,不仅可以稳定界面,也可以作为胶体微胶囊的壁材。使用自然来源的胶体颗粒为稳定颗粒,乳液体系可方便地应用于食品相关领域。近年来由于其全部由水相构成,水-水体系吸引了越来越多的关注。气-水界面与油-水界面具有相同的稳定机制,我们对一些基于气-水界面的应用进行了探讨。我们希望借由该篇文章鼓励更多的研究人员参与到胶体颗粒稳定界面的研究中来,并基于此开发出越来越多的新颖应用。
MSC2000:
孙冠卿, 易宗霖, 魏涛. 胶体颗粒稳定的界面及胶体颗粒在界面的相互作用[J]. 物理化学学报, 2020, 36(10): 1910005.
Guanqing Sun, Zonglin Yi, To Ngai. Particle-Stabilized Interfaces and Their Interactions at Interfaces[J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1910005.
Fig 2
Colloidal particles adsorbed at two phase interface. The contact angle is measured from the aqueous phase. For contact angle lower than 90° (left), o/w emulsion will be preferred while w/o emulsion will be preferred for contact angle higher than 90° (right). For contact angle at or near 90°, higher stability is usually expected. Adapted from reference 15, Elsevier Science Ltd. "
Fig 3
Stabilization mechanism of particle stabilized emulsions. (a) Stabilization of emulsions droplets by particles. The particle can be share by two interfaces (reprint from reference 29 with permission. Copyright 2019 American Chemical Society; (b) the particle can also form 3D interconnected structures which enhance stability. Adapted from reference 30, Elsevier Science Ltd. "
Fig 7
Time evolutions of pair potentials U(r) of polystyrene microspheres trapped at an octane/D2O arising from two different spreading methods. a) Spreading via the microinjection of particles suspensions to the interface, where the suspensions contain 5% isopropanol, the U(r) decays with time; b) Spreading via the buoyancy that drive particles floating to the interface, U(r) is independent of the time evolution. Reprint from reference 41 and it is shared based on Creative Commons conditions. Copyright © 2014, Springer Nature. "
Fig 9
Images of colloidosomes templated from emulsion droplets. (a) PS latex assemble at the oil-water interface to form hollow structures 45, reprint with permission, Copyright©2019 American Chemical Society; (b) SEM image of colloidosomes by sintering the PS latex at elevated temperature (reprint from reference 43 with permission, Copyright©2002, The American Association for the Advancement of Science); (c) SEM images of colloidal capsules by physical crosslinking of the particles at the interface(reprint with permission from reference 47, Copyright©2019 American Chemical Society; (d) CLSM images showing the trigger release of cargo under low pH values (reprint from reference 48 with permission, Copyright© Royal Society of Chemistry). "
Fig 10
Examples of bioparticle stabilized interfaces. (a) SEM images of yeast cell assembly templated from bubbles (Reprint from reference 59 with permission, Copyright© Royal Society of Chemistry.); (b) photo images of chocolates with 50% of fat replaced by cranberry juice. Reprint from reference 60 with permission, Copyright© Royal Society of Chemistry.); (c) Microscopy images of emulsions dropelts stabilized by zein particles at pH4. (Reprint from reference 61 with permission, Copyright© Royal Society of Chemistry.); (d) optical microscopy image of emulsion droplets stabilized by modified cellulose nanocrystal (Reprint from reference 66 with permission, Copyright©2019 American Chemical Society). "
Fig 11
(a) CLSM image showing the stabilization of biopolymer mixtures by polystyrene latex (Reprint from reference 70 with permission, Copyright©2019 American Chemical Society); (b) CLSM image of an w/w emulsion droplet. The green phase is dextran (aq), the PEO (aq) phase is not labelled and the latex particle is in yellow (Reprint from reference 72 with permission, Copyright©2019 American Chemical Society); (c) CLSM image of w/w (dextran/PEO) stabilized by protein particles (Reprint from reference 73 with permission, Copyright©2019 American Chemical Society)."
Fig 12
(a) micropump based the two liquid marbles (Reprint with permission from reference 95, Copyright© AIP Publishing); (b) A liquid marble of CoCl2 shelled with Teflon powder changed colour after being exposed to the vapour of water-based flexographic ink (left). A fresh CoCl2 liquid marble (right) was placed in the same Petri dish for comparison (Reprint from reference 96 with permission, Copyright© Royal Society of Chemistry); (c) Janus particles obtained from partial modification of silica particles at the interface of liquid marbles (Reprint from reference 98 with permission, Copyright©2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)."
1 | Ngai, T.; Bon, S. Particle-Stabilized Emulsions and Colloids: Formation and Applications; RSC Publishing: London, 2014. |
2 |
Aveyard R. ; Binks B. P. ; Clint J. H. Adv. Colloid Interface Sci. 2003, 100, 503.
doi: 10.1016/S0001-8686(02)00069-6 |
3 |
Leal-Calderon F. ; Schmitt V. Curr. Opin. Colloid Interface Sci. 2008, 13 (4), 217.
doi: 10.1016/j.cocis.2007.09.005 |
4 |
Ramsden W. Proc. R. Soc. London 1903, 72 (479), 156.
doi: 10.1098/rspl.1903.0034 |
5 |
Pickering S. U. J. Chem. Soc. 1907, 91, 2001.
doi: 10.1039/CT9079102001 |
6 |
Finkle P. ; Draper H. D. ; Hildebrand J. H. J. Am. Chem. Soc. 1923, 45 (12), 2780.
doi: 10.1021/ja01665a002 |
7 |
Shuttleworth R. Proc. Phys. SoLondon c., Sect. A 1950, 63 (5), 444.
doi: 10.1088/0370-1298/63/5/302 |
8 |
Matalon R. Nature 1953, 172 (4366), 19.
doi: 10.1038/172019a0 |
9 |
Pieranski P. Phys. Rev. Lett. 1980, 45 (7), 569.
doi: 10.1103/PhysRevLett.45.569 |
10 |
Levine S. ; Bowen B. D. ; Partridge S. J. Colloids Surf. 1989, 38 (2), 345.
doi: 10.1016/0166-6622(89)80272-0 |
11 |
Levine S. ; Bowen B. D. ; Partridge S. J. Colloids Surf. 1989, 38 (2), 325.
doi: 10.1016/0166-6622(89)80271-9 |
12 |
Levine S. ; Bowen B. D. Colloids Surf. 1991, 59, 377.
doi: 10.1016/0166-6622(91)80260-U |
13 |
Shi S. ; Russell T. P. Adv. Mater. 2018, 30 (44), e1800714.
doi: 10.1002/adma.201800714 |
14 |
French D. J. ; Brown A. T. ; Schofield A. B. ; Fowler J. ; Taylor P. ; Clegg P. S. Sci. Rep. 2016, 6, 31401.
doi: 10.1038/srep31401 |
15 |
Binks B. P. Curr. Opin. Colloid Interface Sci. 2002, 7 (1–2), 21.
doi: 10.1016/S1359-0294(02)00008-0 |
16 |
Zanini M. ; Isa L. J. Phys. Condens. Matter 2016, 28 (31), 313002.
doi: 10.1088/0953-8984/28/31/313002 |
17 |
Kralova I. ; Sjoblom J. ; Oye G. ; Simon S. ; Grimes B. A. ; Paso K. Adv. Colloid Interface Sci. 2011, 169 (2), 106.
doi: 10.1016/j.cis.2011.09.001 |
18 |
Ngai T. ; Auweter H. ; Behrens S. H. Macromolecules 2006, 39 (23), 8171.
doi: 10.1021/ma061366k |
19 |
Sun G. ; Li Z. ; Ngai T. Angew. Chem. Int. Ed. Engl. 2010, 49 (12), 2163.
doi: 10.1002/anie.200907175 |
20 |
Binks B. P. ; Whitby C. P. Colloids Surf. A 2003, 224 (1–3), 241.
doi: 10.1016/S0927-7757(03)00329-7 |
21 |
Jiang J. ; Zhu Y. ; Cui Z. ; Binks B. P. Angew. Chem. Int. Ed. Engl. 2013, 52 (47), 12373.
doi: 10.1002/anie.201305947 |
22 |
Shi Y. L. ; Xiong D. Z. ; Li Z. Y. ; Wang H. Y. ; Pei Y. C. ; Chen Y. K. ; Wang J. J. ACS Sustainable Chem. Eng. 2018, 6 (11), 15383.
doi: 10.1021/acssuschemeng.8b03808 |
23 |
Zhu Y. ; Jiang J. ; Liu K. ; Cui Z. ; Binks B. P. Langmuir 2015, 31 (11), 3301.
doi: 10.1021/acs.langmuir.5b00295 |
24 |
Chen K. ; Yu G. ; He F. ; Zhou Q. ; Xiao D. ; Li J. ; Feng Y. Carbohydr. Polym. 2017, 176, 203.
doi: 10.1016/j.carbpol.2017.07.046 |
25 |
Aveyard R. ; Binks B. P. ; Esquena J. ; Fletcher P. D. I. ; Buscall R. ; Davies S. Langmuir 1999, 15 (4), 970.
doi: 10.1021/La981099e |
26 |
Binks B. P. ; Lumsdon S. O. Phys. Chem. Chem. Phys. 1999, 1 (12), 3007.
doi: 10.1039/A902209k |
27 |
Binks B. P. ; Cho W. G. ; Fletcher P. D. I. ; Petsev D. N. Langmuir 2000, 16 (3), 1025.
doi: 10.1021/La990952m |
28 |
Rand B. ; Pekenć E. ; Goodwin J. W. ; Smith R. W. J. Chem. Soc. Faraday Trans. 1 1980, 76, 225.
doi: 10.1039/f19807600225 |
29 |
Horozov T. S. ; Binks B. P. Angew. Chem. Int. Ed. Engl. 2006, 45 (5), 773.
doi: 10.1002/anie.200503131 |
30 |
Dickinson E. Curr. Opin. Colloid Interface Sci. 2010, 15 (1–2), 40.
doi: 10.1016/j.cocis.2009.11.001 |
31 |
Ashby N. P. ; Binks B. P. Phys. Chem. Chem. Phys. 2000, 2 (24), 5640.
doi: 10.1039/B007098j |
32 |
Lin Y. ; Skaff H. ; Emrick T. ; Dinsmore A. D. ; Russell T. P. Science 2003, 299 (5604), 226.
doi: 10.1126/science.1078616 |
33 |
Lin Y. ; Boker A. ; Skaff H. ; Cookson D. ; Dinsmore A. D. ; Emrick T. ; Russell T. P. Langmuir 2005, 21 (1), 191.
doi: 10.1021/la048000q |
34 |
Wu J. ; Ma G. H. Small 2016, 12 (34), 4633.
doi: 10.1002/smll.201600877 |
35 |
Binks B. P. ; Murakami R. Nat. Mater. 2006, 5 (11), 865.
doi: 10.1038/nmat1757 |
36 |
Fujii S. ; Iddon P. D. ; Ryan A. J. ; Armes S. P. Langmuir 2006, 22 (18), 7512.
doi: 10.1021/la060812u |
37 |
Fujii S. ; Ryan A. J. ; Armes S. P. J. Am. Chem. Soc. 2006, 128 (24), 7882.
doi: 10.1021/ja060640n |
38 |
Zahn K. ; Lenke R. ; Maret G. Phys. Rev. Lett. 1999, 82 (13), 2721.
doi: 10.1103/PhysRevLett.82.2721 |
39 |
Aveyard R. ; Clint J. H. ; Nees D. ; Paunov V. N. Langmuir 2000, 16 (4), 1969.
doi: 10.1021/La990887g |
40 | Aveyard, R.; Binks, B. P.; Clint, J. H.; Fletcher, P. D.; Horozov, T. S.; Neumann, B.; Paunov, V. N.; Annesley, J.; Botchway, S. W.; Nees, D.; et al. Phys. Rev. Lett. 2002, 88 (24), 246102. doi: 10.1103/PhysRevLett.88.246102 |
41 |
Gao P. ; Xing X. ; Li Y. ; Ngai T. ; Jin F. Sci. Rep. 2014, 4, 4778.
doi: 10.1038/srep04778 |
42 |
Gao P. ; Yi Z. ; Xing X. ; Ngai T. ; Jin F. Langmuir 2016, 32 (19), 4909.
doi: 10.1021/acs.langmuir.6b01362 |
43 |
Dinsmore A. D. ; Hsu M. F. ; Nikolaides M. G. ; Marquez M. ; Bausch A. R. ; Weitz D. A. Science 2002, 298 (5595), 1006.
doi: 10.1126/science.1074868 |
44 |
Bollhorst T. ; Rezwan K. ; Maas M. Chem. Soc. Rev. 2017, 46 (8), 2091.
doi: 10.1039/c6cs00632a |
45 |
Velev O. D. ; Furusawa K. ; Nagayama K. Langmuir 1996, 12 (10), 2374.
doi: 10.1021/La9506786 |
46 |
Velev O. D. ; Furusawa K. ; Nagayama K. Langmuir 1996, 12 (10), 2385.
doi: 10.1021/La950679y |
47 |
Ao Z. ; Yang Z. ; Wang J. F. ; Zhang G. Z. ; Ngai T. Langmuir 2009, 25 (5), 2572.
doi: 10.1021/la804036m |
48 |
Cayre O. J. ; Hitchcock J. ; Manga M. S. ; Fincham S. ; Simoes A. ; Williams R. A. ; Biggs S. Soft Matter 2012, 8 (17), 4717.
doi: 10.1039/c2sm00002d |
49 | Biggs, S.; Cayre, O. Particle-Stabilized Emulsions as Templates for Hollow Spheres and Microcapsules. In Particle-Stabilized Emulsions and Colloids: Formation and Applications; The Royal Society of Chemistry: London, 2015; Chapter 9, pp. 228–246. |
50 |
Liu D. ; Xue N. ; Wei L. ; Zhang Y. ; Qin Z. ; Li X. ; Binks B. P. ; Yang H. Angew. Chem. Int. Ed. Engl. 2018, 57 (34), 10899.
doi: 10.1002/anie.201805022 |
51 |
He Y. J. ; Yu X. Y. Mater. Lett. 2007, 61 (10), 2071.
doi: 10.1016/j.matlet.2006.08.018 |
52 |
Yang J. ; Li Y. ; Wang J. ; Sun X. ; Cao R. ; Sun H. ; Huang C. ; Chen J. Anal. Chim. Acta. 2015, 872, 35.
doi: 10.1016/j.aca.2015.02.058 |
53 |
Harman C. L. G. ; Patel M. A. ; Guldin S. ; Davies G. L. Curr. Opin. Colloid Interface Sci. 2019, 39, 173.
doi: 10.1016/j.cocis.2019.01.017 |
54 |
Dickinson E. ; Rolfe S. E. ; Dalgleish D. G. Food Hydrocolloids 1988, 2 (5), 397.
doi: 10.1016/S0268-005X(88)80004-3 |
55 |
Dickinson E. Colloids Surf. 1989, 42 (1), 191.
doi: 10.1016/0166-6622(89)80086-1 |
56 |
Dickinson E. ; Evison J. ; Owusu R. K. Food Hydrocolloids 1991, 5 (5), 481.
doi: 10.1016/S0268-005x(09)80106-9 |
57 |
Kwok M. H. ; Sun G. ; Ngai T. Langmuir 2019, 35 (12), 4205.
doi: 10.1021/acs.langmuir.8b04009 |
58 |
Plamper F. A. ; Richtering W. Acc. Chem. Res. 2017, 50 (2), 131.
doi: 10.1021/acs.accounts.6b00544 |
59 |
Brandy M. L. ; Cayre O. J. ; Fakhrullin R. F. ; Velev O. D. ; Paunov V. N. Soft Matter 2010, 6 (15), 3494.
doi: 10.1039/c0sm00003e |
60 |
Skelhon T. S. ; Grossiord N. ; Morgan A. R. ; Bon S. A. F. J. Mater. Chem. 2012, 22 (36), 19289.
doi: 10.1039/c2jm34233b |
61 |
de Folter J. W. J. ; van Ruijven M. W. M. ; Velikov K. P. Soft Matter 2012, 8 (25), 2807.
doi: 10.1039/C2SM07417F |
62 |
Zhou F. Z. ; Huang X. N. ; Wu Z. L. ; Yin S. W. ; Zhu J. H. ; Tang C. H. ; Yang X. Q. J. Agric. Food Chem. 2018, 66 (42), 11113.
doi: 10.1021/acs.jafc.8b03714 |
63 |
Wang L. J. ; Yin S. W. ; Wu L. Y. ; Qi J. R. ; Guo J. ; Yang X. Q. Food Chem. 2016, 213, 462.
doi: 10.1016/j.foodchem.2016.06.119 |
64 |
Zhu Q. M. ; Lu H. Q. ; Zhu J. Y. ; Zhang M. ; Yin L. J. Food Hydrocolloids 2019, 91, 204.
doi: 10.1016/j.foodhyd.2019.01.029 |
65 |
Nan F. F. ; Wu J. ; Qi F. ; Fan Q. Z. ; Ma G. H. ; Ngai T. J. Mater. Chem. B 2014, 2 (42), 7403.
doi: 10.1039/c4tb01259c |
66 |
Tang C. ; Spinney S. ; Shi Z. ; Tang J. ; Peng B. ; Luo J. ; Tam K. C. Langmuir 2018, 34 (43), 12897.
doi: 10.1021/acs.langmuir.8b02437 |
67 |
Dickinson E. Trends Food Sci. Technol. 2019, 83, 31.
doi: 10.1016/j.tifs.2018.11.004 |
68 |
Madadlou A. ; Saint-Jalmes A. ; Guyomarc'hF. ; Floury J. ; Dupont D. Food Hydrocolloids 2019, 93, 351.
doi: 10.1016/j.foodhyd.2019.02.031 |
69 | Albertsson, P. Å. Partition of Cell Particles and Macromolecules in Polymer Two-Phase Systems. In Adv. Protein Chem. Anfinsen, C. B.; Edsall, J. T.; Richards, F. M. Eds.; Academic Press: New York, 1970; Vol. 24; pp. 309–341. |
70 |
Firoozmand H. ; Murray B. S. ; Dickinson E. Langmuir 2009, 25 (3), 1300.
doi: 10.1021/la8037389 |
71 |
Yaman K. ; Jeppesen C. ; Marques C. M. Europhys. Lett. 1998, 42 (2), 221.
doi: 10.1209/epl/i1998-00227-1 |
72 |
Balakrishnan G. ; Nicolai T. ; Benyahia L. ; Durand D. Langmuir 2012, 28 (14), 5921.
doi: 10.1021/la204825f |
73 |
Nguyen B. T. ; Nicolai T. ; Benyahia L. Langmuir 2013, 29 (34), 10658.
doi: 10.1021/la402131e |
74 |
Cacace D. N. ; Rowland A. T. ; Stapleton J. J. ; Dewey D. C. ; Keating C. D. Langmuir 2015, 31 (41), 11329.
doi: 10.1021/acs.langmuir.5b02754 |
75 |
Nguyen B. T. ; Wang W. ; Saunders B. R. ; Benyahia L. ; Nicolai T. Langmuir 2015, 31 (12), 3605.
doi: 10.1021/la5049024 |
76 |
Dickinson E. Food Hydrocolloids 2016, 52, 497.
doi: 10.1016/j.foodhyd.2015.07.029 |
77 |
Esquena J. Curr. Opin. Colloid Interface Sci. 2016, 25, 109.
doi: 10.1016/j.cocis.2016.09.010 |
78 |
Gonzalez-Jordan A. ; Nicolai T. ; Benyahia L. Langmuir 2016, 32 (28), 7189.
doi: 10.1021/acs.langmuir.6b01993 |
79 |
de Freitas R. A. ; Nicolai T. ; Chassenieux C. ; Benyahia L. Langmuir 2016, 32 (5), 1227.
doi: 10.1021/acs.langmuir.5b03761 |
80 |
Chatsisvili N. ; Philipse A. P. ; Loppinet B. ; Tromp R. H. Food Hydrocolloids 2017, 65, 17.
doi: 10.1016/j.foodhyd.2016.10.036 |
81 |
Nicolai T. ; Murray B. Food Hydrocolloids 2017, 68, 157.
doi: 10.1016/j.foodhyd.2016.08.036 |
82 |
Ben Ayed E. ; Cochereau R. ; Dechance C. ; Capron I. ; Nicolai T. ; Benyahia L. Langmuir 2018, 34 (23), 6887.
doi: 10.1021/acs.langmuir.8b01239 |
83 |
Binks B. P. ; Shi H. Langmuir 2019, 35 (11), 4046.
doi: 10.1021/acs.langmuir.8b04151 |
84 |
Binks B. P. ; Tyowua A. T. Soft Matter 2016, 12 (3), 876.
doi: 10.1039/c5sm02438b |
85 |
Binks B. P. ; Lumsdon S. O. Langmuir 2000, 16 (8), 3748.
doi: 10.1021/La991427q |
86 |
Aussillous P. ; Quere D. Nature 2001, 411 (6840), 924.
doi: 10.1038/35082026 |
87 |
Bormashenko E. Langmuir 2017, 33 (3), 663.
doi: 10.1021/acs.langmuir.6b03231 |
88 |
Aussillous P. ; Quere D. Proc. R. Soc. A 2006, 462 (2067), 973.
doi: 10.1098/rspa.2005.1581 |
89 |
Gao L. ; McCarthy T. J. Langmuir 2007, 23 (21), 10445- 7.
doi: 10.1021/la701901b |
90 |
Dandan M. ; Erbil H. Y. Langmuir 2009, 25 (14), 8362.
doi: 10.1021/la900729d |
91 |
Tosun A. ; Erbil H. Y. Appl. Surf. Sci. 2009, 256 (5), 1278.
doi: 10.1016/j.apsusc.2009.10.035 |
92 |
Bormashenko E. ; Bormashenko Y. ; Musin A. ; Barkay Z. Chemphyschem 2009, 10 (4), 654- 6.
doi: 10.1002/cphc.200800746 |
93 |
Bormashenko E. ; Musin A. Appl. Surf. Sci. 2009, 255 (12), 6429.
doi: 10.1016/j.apsusc.2009.02.027 |
94 |
Bormashenko E. ; Pogreb R. ; Whyman G. ; Musin A. Colloids Surf. A 2009, 351 (1–3), 78.
doi: 10.1016/j.colsurfa.2009.09.027 |
95 |
Bormashenko E. ; Balter R. ; Aurbach D. Appl. Phys. Lett. 2010, 97 (9), 091908.
doi: 10.1063/1.3487936 |
96 |
Tian J. ; Arbatan T. ; Li X. ; Shen W. Chem. Commun. 2010, 46 (26), 4734.
doi: 10.1039/c001317j |
97 |
Zhang L. ; Cha D. ; Wang P. Adv. Mater. 2012, 24 (35), 4756.
doi: 10.1002/adma.201201885 |
98 |
Sheng Y. ; Sun G. ; Wu J. ; Ma G. ; Ngai T. Angew. Chem. Int. Ed. Engl. 2015, 54 (24), 7012.
doi: 10.1002/anie.201500010 |
99 |
Serrano M. C. ; Nardecchia S. ; Gutierrez M. C. ; Ferrer M. L. ; del Monte F. ACS Appl. Mater. Interfaces 2015, 7 (6), 3854.
doi: 10.1021/acsami.5b00072 |
100 |
Arbatan T. ; Li L. ; Tian J. ; Shen W. Adv. Healthc. Mater. 2012, 1 (1), 80.
doi: 10.1002/adhm.201100016 |
101 |
Oliveira N. M. ; Reis R. L. ; Mano J. F. Adv. Healthc. Mater. 2017, 6 (19), 1700192.
doi: 10.1002/adhm.201700192 |
[1] | 王文亮, 张灏纯, 陈义钢, 史海峰. 具有光催化与光芬顿反应协同作用的2D/2D α-Fe2O3/g-C3N4 S型异质结用于高效降解四环素[J]. 物理化学学报, 2022, 38(7): 2201008 - . |
[2] | 孙轲, 赵永青, 殷杰, 靳晶, 刘翰文, 席聘贤. 有机配体表面改性NiCo2O4纳米线用于水全分解[J]. 物理化学学报, 2022, 38(6): 2107005 - . |
[3] | 宋雨珂, 谢文富, 邵明飞. 一体化电极电催化二氧化碳还原研究进展[J]. 物理化学学报, 2022, 38(6): 2101028 - . |
[4] | 朱思颖, 李辉阳, 胡忠利, 张桥保, 赵金保, 张力. 锂离子电池氧化亚硅负极结构优化和界面改性研究进展[J]. 物理化学学报, 2022, 38(6): 2103052 - . |
[5] | 俞宏伟, 李实, 李金龙, 朱韶华, 孙成珍. 气驱油油气混相过程的界面传质特性及其分子机制[J]. 物理化学学报, 2022, 38(5): 2006061 - . |
[6] | 殷宇豪, 沈阳, 王虎, 陈肖, 邵林, 华文宇, 王娟, 崔义. TiN/HfxZr1-xO2/TiN铁电电容器的原位生长与表征[J]. 物理化学学报, 2022, 38(5): 2006016 - . |
[7] | 刘苗苗, 王文娟, 郝秀萍, 董晓燕. Aβ40和hIAPP在溶液和表面的成核与交叉成核聚集行为[J]. 物理化学学报, 2022, 38(3): 2002024 - . |
[8] | 常明凯, 胡娜, 李遥, 鲜东帆, 周万强, 王静一, 时燕琳, 刘春立. Eu(Ⅲ)在蒙脱石上的吸附及碳酸根和磷酸根对其吸附的影响[J]. 物理化学学报, 2022, 38(3): 2003031 - . |
[9] | 何子旭, 陈亚威, 黄凡洋, 揭育林, 李新鹏, 曹瑞国, 焦淑红. 氟代溶剂在锂金属电池中的应用[J]. 物理化学学报, 2022, 38(11): 2205005 - . |
[10] | 宋厚甫, 康飞宇. 石墨烯导热研究进展[J]. 物理化学学报, 2022, 38(1): 2101013 - . |
[11] | 张鹏, 王继全, 李源, 姜丽莎, 王壮壮, 张高科. 非贵金属助剂Ni2P修饰类石墨碳氮化物光催化剂增强可见光光催化产氢性能[J]. 物理化学学报, 2021, 37(8): 2009102 - . |
[12] | 王艳秋, 钟子欣, 刘唐康, 刘国亮, 洪昕林. Cu@UiO-66衍生的Cu+-ZrO2界面位点用于高效催化CO2加氢制甲醇[J]. 物理化学学报, 2021, 37(5): 2007089 - . |
[13] | 王云飞, 刘建华, 于美, 钟锦岩, 周琪森, 邱俊明, 张晓亮. SnO2表面卤化提高钙钛矿太阳能电池光伏性能[J]. 物理化学学报, 2021, 37(3): 2006030 - . |
[14] | 何一涛, 丁飞, 林立, 王志红, 吕喆, 张耀辉. 电极界面浓差极化对锂金属沉积的影响[J]. 物理化学学报, 2021, 37(2): 2009001 - . |
[15] | 王志达, 冯元宬, 卢松涛, 王锐, 秦伟, 吴晓宏. 利用原位氟化保护层改善三维锡锂合金/碳纸负极贫电解液下性能[J]. 物理化学学报, 2021, 37(2): 2008082 - . |
|