物理化学学报 >> 2020, Vol. 36 >> Issue (5): 1905013.doi: 10.3866/PKU.WHXB201905013
所属专题: 钠离子储能材料和器件
收稿日期:
2019-05-02
录用日期:
2019-07-01
发布日期:
2019-07-04
通讯作者:
纪效波
E-mail:xji@csu.edu.cn
作者简介:
纪效波,中南大学教授,国家优秀青年基金获得者,教育部青年长江学者。英国皇家化学学会会士。主要研究方向为新能源材料与能源器件
基金资助:
Laiqiang Xu,Jiayang Li,Cheng Liu,Guoqiang Zou,Hongshuai Hou,Xiaobo Ji*()
Received:
2019-05-02
Accepted:
2019-07-01
Published:
2019-07-04
Contact:
Xiaobo Ji
E-mail:xji@csu.edu.cn
Supported by:
摘要:
地球上钠资源储量丰富、成本低廉,使得钠电池吸引了越来越多研究者的关注。传统的基于有机溶剂电解液体系的钠电池在安全方面存在不足。固态钠离子电池能够有效解决安全的问题,增加电池的安全性能。固态钠离子电池是一种很有前景的储能方式。钠离子固体电解质主要有Na-β-Al2O3、钠超离子导体(NASICON)、硫化物、聚合物以及硼氢化物这几类。无机固体电解质相对于聚合物固体电解质,离子电导率有优势。本文总结了三种常见的无机钠离子固体电解质:Na-β-Al2O3、NASICON、硫化物的研究进展,从离子电导率和界面稳定性等方面阐述了近年来的发展。
MSC2000:
徐来强,李佳阳,刘城,邹国强,侯红帅,纪效波. 无机钠离子电池固体电解质研究进展[J]. 物理化学学报, 2020, 36(5): 1905013.
Laiqiang Xu,Jiayang Li,Cheng Liu,Guoqiang Zou,Hongshuai Hou,Xiaobo Ji. Research Progress in Inorganic Solid-State Electrolytes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905013.
表1
TiO2不同掺杂量和烧结温度对于产物β″相含量的影响34"
Temperature/℃ | Contents of β″ Phase (%) | ||||||
0.0%TiO2 | 0.1%TiO2 | 0.2%TiO2 | 0.4%TiO2 | 0.8%TiO2 | 1.6%TiO2 | 2.0%TiO2 | |
1300 | 76.27 | 72.97 | 83.27 | 84.09 | 87.10 | 91.94 | 93.87 |
1400 | 76.92 | 85.71 | 84.81 | 87.23 | 91.10 | 93.11 | 95.33 |
1450 | 81.04 | 86.54 | 87.35 | 90.73 | 92.29 | 94.60 | 95.04 |
1500 | 85.09 | 90.84 | 91.77 | 94.90 | 94.32 | 95.78 | 97.21 |
1550 | 90.98 | 94.63 | 95.21 | 96.24 | 96.98 | 97.36 | 97.92 |
1580 | 92.67 | 97.81 | 98.97 | 97.02 | 97.32 | 98.66 | 97.22 |
1610 | 95.43 | 98.26 | 99.00 | 99.66 | 99.28 | 99.09 | 98.31 |
表2
可以在NaMM’(PO4)3位点替换的离子50, 57, 58."
Site | Substitution of ions possible in NaMM’(PO4)3 |
Na | Li+, Na+, K+ |
M or M’ | Na+, V5+, Nb5+, Ta5+, Ti4+, Ge4+, Zr4+, Sn4+, Th4+, U4+, Nb4+, Hf4+, Al3+, Cr3+, Ga3+, Fe3+, Sc3+, In3+, Lu3+, Y3+, La3+, V3+, Ce3+, Eu3+, Y3+, Yb3+, Er3+, Dy3+, Tb3+, Gd3+, Mg2+, Zn2+, Cu2+, Co2+, Zn2+, Mn2+, Fe2+ |
P | Si4+, As5+, S6+ |
1 |
Poizot P. ; Laruelle S. ; Grugeon S. ; Dupont L. ; Tarascon J. Nature 2000, 407, 496.
doi: 10.1038/35035045 |
2 |
Taberna P. L. ; Mitra S. ; Poizot P. ; Simon P. ; Tarascon J. M. Nat. Mater. 2006, 5, 567.
doi: 10.1038/nmat1672 |
3 |
Nitta N. ; Wu F. ; Lee J. T. ; Yushin G. Mater. Today 2015, 18, 252.
doi: 10.1016/j.mattod.2014.10.040 |
4 |
Li M. ; Lu J. ; Chen Z. ; Amine K. Adv. Mater. 2018, 30, 1800561.
doi: 10.1002/adma.201800561 |
5 |
Schmuch R. ; Wagner R. ; Hörpel G. ; Placke T. ; Winter M. Nat. Energy 2018, 3, 267.
doi: 10.1038/s41560-018-0107-2 |
6 |
Zubi G. ; Dufo-López R. ; Carvalho M. ; Pasaoglu G. Renewable Sustainable Energy Rev. 2018, 89, 292.
doi: 10.1016/j.rser.2018.03.002 |
7 |
Nayak P. K. ; Yang L. ; Brehm W. ; Adelhelm P. Angew. Chem. Int. Ed. 2018, 57, 102.
doi: 10.1002/anie.201703772 |
8 |
Wood Ⅲ D. L. ; Li J. ; Daniel C. J. Power Sources 2015, 275, 234.
doi: 10.1016/j.jpowsour.2014.11.019 |
9 |
Meister P. ; Jia H. ; Li J. ; Kloepsch R. ; Winter M. ; Placke T. Chem. Mater. 2016, 28, 7203.
doi: 10.1021/acs.chemmater.6b02895 |
10 |
Song W. X. ; Hou H. S. ; Ji X. B. Acta Phys. -Chim. Sin. 2017, 33, 103.
doi: 10.3866/PKU.WHXB201608303 |
宋维鑫; 侯红帅; 纪效波. 物理化学学报, 2017, 33, 103.
doi: 10.3866/PKU.WHXB201608303 |
|
11 |
Yabuuchi N. ; Kubota K. ; Dahbi M. ; Komaba S. Chem. Rev. 2014, 114, 11636.
doi: 10.1021/cr500192f |
12 |
Kundu D. ; Talaie E. ; Duffort V. ; Nazar L. F. Angew. Chem. Int. Ed. 2015, 54, 3431.
doi: 10.1002/chin.201521309 |
13 |
Yang Y. Q. ; Chang Z. ; Li M. X. ; Wang X. W. ; Wu Y. P. Solid State Ionics 2015, 269, 1.
doi: 10.1016/j.ssi.2014.11.015 |
14 |
Hu Z. ; Liu Q. ; Chou S. L. ; Dou S. X. Adv. Mater. 2017, 29, 1700606.
doi: 10.1002/adma.201700606 |
15 |
Hou H. ; Banks C. E. ; Jing M. ; Zhang Y. ; Ji X. B. Adv. Mater. 2015, 27, 7861.
doi: 10.1002/adma.201503816 |
16 |
David L. ; Bhandavat R. ; Singh G. ACS Nano 2014, 8, 1759.
doi: 10.1021/nn406156b |
17 |
Jin Y. ; Sun X. ; Yu Y. ; Ding C. ; Chen C. ; Guan Y. Prog. Chem. 2014, 26, 582.
doi: 10.7536/PC130914 |
金翼; 孙信; 余彦; 丁楚雄; 陈春华; 官亦标. 化学进展, 2014, 26, 582.
doi: 10.7536/PC130914 |
|
18 | http://newsxmwb.xinmin.cn/kechuang/2019/03/25/31506485.html (accessed June 29, 2019) |
19 |
Huang Y. ; Zhao L. ; Li L. ; Xie M. ; Wu F. ; Chen R. Adv. Mater. 2019, 31, 1808393.
doi: 10.1002/adma.201808393 |
20 |
Ponrouch A. ; Dedryvère R. ; Monti D. ; Demet A. E. ; Mba J. M. A. ; Croguennec L. ; Masquelier C. ; Johansson P. ; Palacín M. R. Energy Environ. Sci. 2013, 6, 2361.
doi: 10.1039/c3ee41379a |
21 |
Monti D. ; Jónsson E. ; Palacín M. R. ; Johansson P. J. Power Sources 2014, 245, 630.
doi: 10.1016/j.jpowsour.2013.06.153 |
22 |
Ponrouch A. ; Marchante E. ; Courty M. ; Tarascon J. M. ; Palacin M. R. Energy Environ. Sci. 2012, 5, 8572.
doi: 10.1039/c2ee22258b |
23 |
Kim J. K. ; Lim Y. J. ; Kim H. ; Cho G. B. ; Kim Y. Energy Environ. Sci. 2015, 8, 3589.
doi: 10.1039/C5EE01941A |
24 |
Zhang Z. ; Zhang Q. ; Shi J. ; Chu Y. S. ; Yu X. ; Xu K. ; Ge M. ; Yan H. ; Li W. ; Gu L. Adv. Energy Mater. 2017, 7, 1601196.
doi: 10.1002/aenm.201601196 |
25 |
Ma Q. ; Hu Y. ; Li H. ; Chen L. ; Huang X. ; Zhou Z. Acta Phys. -Chim. Sin. 2018, 34, 213.
doi: 10.3866/PKU.WHXB201707172 |
马强; 胡勇胜; 李泓; 陈立泉; 黄学杰; 周志彬. 物理化学学报, 2018, 34, 213.
doi: 10.3866/PKU.WHXB201707172 |
|
26 |
Zhang Q. ; Liang F. ; Yao Y. ; Ma W. ; Yang B. ; Dai Y. Prog. Chem. 2019, 31, 210.
doi: 10.7536/PC180434 |
张庆凯; 梁风; 姚耀春; 马文会; 杨斌; 戴永年. 化学进展, 2019, 31, 210.
doi: 10.7536/PC180434 |
|
27 |
Hou W. ; Guo X. ; Shen X. ; Amine K. ; Yu H. ; Lu J. Nano Energy 2018, 52, 279.
doi: 10.1016/j.nanoen.2018.07.036 |
28 |
Gao H. ; Xin S. ; Xue L. ; Goodenough J. B. Chemistry 2018, 4, 833.
doi: 10.1016/j.chempr.2018.01.007 |
29 |
Zhou W. ; Li Y. ; Xin S. ; Goodenough J. B. ACS Cent. Sci. 2017, 3, 52.
doi: 10.1021/acscentsci.6b00321 |
30 |
Richards W. D. ; Miara L. J. ; Wang Y. ; Kim J. C. ; Ceder G. Chem. Mater. 2015, 28, 266.
doi: 10.1021/acs.chemmater.5b04082 |
31 |
Wenzel S. ; Leichtweiss T. ; Weber D. A. ; Sann J. ; Zeier W. G. ; JanekJ. ACS Appl. Mater. Interfaces 2016, 8, 28216.
doi: 10.1021/acsami.6b10119 |
32 |
Hueso K. B. ; Armand M. ; Rojo T. Energy Environ. Sci. 2013, 6, 734.
doi: 10.1039/C3EE24086J |
33 |
Lu X. ; Xia G. ; Lemmon J. P. ; Yang Z. J. Power Sources 2010, 195, 2431.
doi: 10.1016/j.jpowsour.2009.11.120 |
34 |
Chen G. ; Lu J. ; Li L. ; Chen L. ; Jiang X. J. Alloys Compd. 2016, 673, 295.
doi: 10.1016/j.jallcom.2016.03.009 |
35 |
Xu D. ; Jiang H. ; Li Y. ; Li L. ; Li M. ; Hai O. Eur. Phys. J. Appl. Phys. 2016, 74, 10901.
doi: 10.1051/epjap/2016150466 |
36 |
Park J. H. ; Kim K. H. ; Lim S. K. J. Mater. Sci. 1998, 33, 5671.
doi: 10.1023/A:100448880 |
37 |
Lu X. C. ; Li G. S. ; Kim J. Y. ; Meinhardt K. D. ; Sprenkle V. L. J. Power Sources 2015, 295, 167.
doi: 10.1016/j.jpowsour.2015.06.147 |
38 |
Chen G. Y. ; Lu J. C. ; Zhou X. H. ; Chen L. X. ; Jiang X. B. Ceram. Int. 2016, 42, 18055.
doi: 10.1016/j.ceramint.2016.07.115 |
39 |
Zhu C. F. ; Hong Y. F. ; Huang P. J. Alloys Compd. 2016, 688, 746.
doi: 10.1016/j.jallcom.2016.07.264 |
40 |
Xu D. ; Jiang H. Y. ; Li M. ; Hai O. ; Zhang Y. Ceram. Int. 2015, 41, 5355.
doi: 10.1016/j.ceramint.2014.12.094 |
41 |
Wang M. C. ; Hon M. H. ; Yen F. S. J. Cryst. Growth 1987, 84, 638.
doi: 10.1016/0022-0248(87)90055-8 |
42 |
Lange F. F. ; Miller K. T. J. Am. Ceram. Soc. 1987, 12, 896.
doi: 10.1111/j.1151-2916.1987.tb04913.x |
43 |
Wei X. ; Cao Y. ; Lu L. ; Yang H. ; Shen X. J. Alloys Compd. 2011, 509, 6222.
doi: 10.1016/j.jallcom.2011.03.0 |
44 |
Takahashi T. ; Kuwabara K. J. Appl. Electrochem. 1980, 10, 291.
doi: 10.1007/BF00617203 |
45 |
Chi C. ; Katsui H. ; Goto T. Ceram. Int. 2017, 43, 1278.
doi: 10.1016/j.ceramint.2016.10.077 |
46 |
Yamaguchi S. ; Terabe K. ; Iguchi Y. ; Imai A. Solid State Ionics 1987, 25, 171.
doi: 10.1016/0167-2738(87)90117-2 |
47 |
Pekarsky A. ; Nicholson P. S. Mater. Res. Bull. 1980, 15, 1517.
doi: 10.1016/0025-5408(80)90111-7 |
48 |
Park H. C. ; Lee Y. B. ; Lee S. G. ; Lee C. H. ; Kim J. K. ; Hong S. S. ; Park S. S. Ceram. Int. 2005, 31, 293.
doi: 10.1016/j.ceramint.2004.05.019 |
49 |
Yi E. ; Temeche E. ; Laine R. M. J. Mater. Chem. A 2018, 6, 12411.
doi: 10.1039/C8TA02907E |
50 |
Goodenough J. ; Hong H. P. ; Kafalas J. Mater. Res. Bull. 1976, 11, 203.
doi: 10.1016/0025-5408(76)90077-5 |
51 |
Chen M. ; Hua W. ; Xiao J. ; Cortie D. ; Chen W. ; Wang E. ; Hu Z. ; Gu Q. ; Wang X. ; Indris S. Nat. Commun. 2019, 10, 1480.
doi: 10.1038/s41467-019-09170-5 |
52 | Zhao C. ; Liu L. ; Qi X. ; Lu Y. ; Wu F. ; Zhao J. ; Yu Y. ; Hu Y. S. ; Chen L. Adv. Energy Mater. 2018, 8, 1704012. |
53 |
Boilot J. ; Collin G. ; Colomban P. Mater. Res. Bull. 1987, 22, 669.
doi: 10.1016/0025-5408(87)90116-4 |
54 |
Zhu Y. S. ; Li L. L. ; Li C. Y. ; Zhou L. ; Wu Y. P. Solid State Ionics 2016, 289, 113.
doi: 10.1016/j.ssi.2016.02.021 |
55 |
Shao Y. ; Zhong G. ; Lu Y. ; Liu L. ; Zhao C. ; Zhang Q. ; Hu Y. S. ; Yang Y. ; Chen L. Energy Storage Mater. 2019.
doi: 10.1016/j.ensm.2019.04.009 |
56 |
Imanaka N. ; Kuwabara S. ; Adachi G. Y. ; Shiokawa J. Solid State Ionics 1987, 23, 15.
doi: 10.1016/0167-2738(87)90076-2 |
57 |
Agrawal D. K. Trans. Indian Ceram. Soc. 1996, 55, 1.
doi: 10.1080/0371750X.1996.10804741 |
58 |
Aono H. ; Sugimoto E. ; Sadaoka Y. ; Imanaka N. ; Adachi G. Y. Solid State Ionics 1991, 47, 257.
doi: 10.1016/0167-2738(91)90247-9 |
59 |
Zhang Z. Z. ; Zhang Q. H. ; Shi J. A. ; Chu Y. S. ; Yu X. Q. ; Xu K. Q. ; Ge M. Y. ; Yan H. F. ; Li W. J. ; Gu L. ;et al Adv. Energy Mater. 2016, 7, 1601196.
doi: 10.1002/aenm.201601196 |
60 |
Deng Y. ; Eames C. ; Nguyen L. H. ; Pecher O. ; Griffith K. J. ; Courty M. ; Fleutot B. ; Chotard J. N. ; Grey C. P. ; Islam M. S. Chem. Mater. 2018, 30, 2618.
doi: 10.1021/acs.chemmater.7b05237 |
61 |
Samiee M. ; Radhakrishnan B. ; Rice Z. ; Deng Z. ; Meng Y. S. ; Ong S. P. ; Luo J. J. Power Sources 2017, 347, 229.
doi: 10.1016/j.jpowsour.2017.02.04 |
62 |
Tatsumisago M. ; Hayashi A. Int. J. Appl. Glass Sci. 2014, 5, 226.
doi: 10.1111/ijag.12084 |
63 |
Hayashi A. ; Noi K. ; Sakuda A. ; Tatsumisago M. Nat. Commun. 2012, 3, 856.
doi: 10.1038/ncomms1843 |
64 |
Hu P. ; Zhang Y. ; Chi X. ; Kumar Rao K. ; Hao F. ; Dong H. ; Guo F. ; Ren Y. ; Grabow L. C. ; Yao Y. ACS Appl. Mater. Interfaces 2019, 11, 9672.
doi: 10.1021/acsami.8b19984 |
65 |
Yue J. ; Zhu X. ; Han F. ; Fan X. ; Wang L. ; Yang J. ; Wang C. ACS Appl. Mater. Interfaces 2018, 10, 39645.
doi: 10.1021/acsami.8b12610 |
66 |
Takeuchi S. ; Suzuki K. ; Hirayama M. ; Kanno R. J. Solid State Chem. 2018, 265, 353.
doi: 10.1016/j.jssc.2018.06.023 |
67 |
Dive A. ; Benmore C. ; Wilding M. ; Martin S. W. ; Beckman S. ; Banerjee S. J. Phys. Chem. B 2018, 122, 7597.
doi: 10.1021/acs.jpcb.8b04353 |
68 |
Wu E. A. ; Kompella C. S. ; Zhu Z. ; Lee J. Z. ; Lee S. C. ; Chu I. H. ; Nguyen H. ; Ong S. P. ; Banerjee A. ; Meng Y. S. ACS Appl. Mater. Interfaces 2018, 10, 10076.
doi: 10.1021/acsami.7b19037 |
69 |
Wan H. ; Mwizerwa J. P. ; Qi X. ; Liu X. ; Xu X. ; Li H. ; Hu Y. S. ; Yao X. ACS Nano 2018, 12, 2809.
doi: 10.1021/acsnano.8b00073 |
70 |
Chi X. ; Liang Y. ; Hao F. ; Zhang Y. ; Whiteley J. ; Dong H. ; Hu P. ; Lee S. ; Yao Y. Angew. Chem. Int. Ed. 2018, 57, 2630.
doi: 10.1002/anie.201712895 |
71 |
Shang S. L. ; Wang Y. ; Anderson T. J. ; Liu Z. K. Phys. Rev. Mater. 2019, 3, 015401.
doi: 10.1103/PhysRevMaterials.3.015401 |
72 |
Moon C. K. ; Lee H. J. ; Park K. H. ; Kwak H. ; Heo J. W. ; Choi K. ; Yang H. ; Kim M. S. ; Hong S. T. ; Lee J. H. ACS Energy Lett. 2018, 3, 2504.
doi: 10.1021/acsenergylett.8b01479 |
73 |
Huang H. ; Wu H. H. ; Wang X. ; Huang B. ; Zhang T. Y. Phys. Chem. Chem. Phys. 2018, 20, 20525.
doi: 10.1039/C8CP02383B |
74 |
Uematsu M. ; Yubuchi S. ; Noi K. ; Sakuda A. ; Hayashi A. ; Tatsumisago M. Solid State Ionics 2018, 320, 33.
doi: 10.1016/j.ssi.2017.12.021 |
75 |
Noi K. ; Nagata Y. ; Hakari T. ; Suzuki K. ; Yubuchi S. ; Ito Y. ; Sakuda A. ; Hayashi A. ; Tatsumisago M. ACS Appl. Mater. Interfaces 2018, 10, 19605.
doi: 10.1021/acsami.8b02427 |
76 |
Tang H. ; Deng Z. ; Lin Z. ; Wang Z. ; Chu I. H. ; Chen C. ; Zhu Z. ; Zheng C. ; Ong S. P. Chem. Mater. 2017, 30, 163.
doi: 10.1021/acs.chemmater.7b04096 |
77 |
Zhang D. ; Cao X. ; Xu D. ; Wang N. ; Yu C. ; Hu W. ; Yan X. ; Mi J. ; Wen B. ; Wang L. Electrochim. Acta 2018, 259, 100.
doi: 10.1016/j.electacta.2017.10.173 |
78 |
Tanibata N. ; Noi K. ; Hayashi A. ; Tatsumisago M. Solid State Ionics 2018, 320, 193.
doi: 10.1016/j.ssi.2018.02.042 |
79 |
Jansen M. ; Henseler U. J. Solid State Chem. 1992, 99, 110.
doi: 10.1016/0022-4596(92)90295-7 |
80 |
Berbano S. S. ; Seo I. ; Bischoff C. M. ; Schuller K. E. ; Martin S. W. J. Non-Cryst. Solids 2012, 358, 93.
doi: 10.1016/j.jnoncrysol.2011.08.030 |
81 |
Krauskopf T. ; Culver S. P. ; Zeier W. G. Inorg. Chem. 2018, 57, 4739.
doi: 10.1021/acs.inorgchem.8b00458 |
82 |
Yu Z. ; Shang S. L. ; Seo J. H. ; Wang D. ; Luo X. ; Huang Q. ; Chen S. ; Lu J. ; Li X. ; Liu Z. K. Adv. Mater. 2017, 29, 1605561.
doi: 10.1002/adma.201605561 |
83 |
Yu Z. ; Shang S. L. ; Wang D. ; Li Y. C. ; Yennawar H. P. ; Li G. ; Huang H. T. ; Gao Y. ; Mallouk T. E. ; Liu Z. K. Energy Storage Mater. 2019, 17, 70.
doi: 10.1016/j.ensm.2018.11.027 |
84 |
Kim S. K. ; Mao A. ; Sen S. ; Kim S. Chem. Mater. 2014, 26, 5695.
doi: 10.1021/cm502542p |
85 |
Wang H. ; Chen Y. ; Hood Z. D. ; Sahu G. ; Pandian A. S. ; Keum J. K. ; An K. ; Liang C. Angew. Chem. Int. Ed. 2016, 55, 8551.
doi: 10.1002/anie.201601546 |
86 |
Shang S. L. ; Yu Z. ; Wang Y. ; Wang D. ; Liu Z. K. ACS Appl. Mater. Interfaces 2017, 9, 16261.
doi: 10.1021/acsami.7b03606 |
87 |
Kim T. W. ; Park K. H. ; Choi Y. E. ; Lee J. Y. ; Jung Y. S. J. Mater. Chem. A 2018, 6, 840.
doi: 10.1039/C7TA09242C |
88 |
Zhang L. ; Yang K. ; Mi J. ; Lu L. ; Zhao L. ; Wang L. ; Li Y. ; Zeng H. Adv. Energy Mater. 2015, 5, 1501294.
doi: 10.1002/aenm.201501294 |
89 |
Kim J. J. ; Yoon K. ; Park I. ; Kang K. Small Methods 2017, 1, 1700219.
doi: 10.1002/smtd.201700219 |
90 |
Tian Y. ; Sun Y. ; Hannah D. C. ; Xiao Y. ; Liu H. ; Chapman K. W. ; Bo S. H. ; Ceder G. Joule 2019, 3, 17.
doi: 10.1016/j.joule.2018.12.019 |
[1] | 王艳秋, 钟子欣, 刘唐康, 刘国亮, 洪昕林. Cu@UiO-66衍生的Cu+-ZrO2界面位点用于高效催化CO2加氢制甲醇[J]. 物理化学学报, 2021, 37(5): 2007089 -0 . |
[2] | 王云飞, 刘建华, 于美, 钟锦岩, 周琪森, 邱俊明, 张晓亮. SnO2表面卤化提高钙钛矿太阳能电池光伏性能[J]. 物理化学学报, 2021, 37(3): 2006030 -0 . |
[3] | 朱高龙, 赵辰孜, 袁洪, 南皓雄, 赵铂琛, 侯立鹏, 何传新, 刘全兵, 黄佳琦. 基于局部高盐界面润湿策略构筑的固态金属锂软包电池[J]. 物理化学学报, 2021, 37(2): 2005003 -0 . |
[4] | 吴晨, 周颖, 朱晓龙, 詹忞之, 杨汉西, 钱江锋. 锂金属电池用高浓度电解液体系研究进展[J]. 物理化学学报, 2021, 37(2): 2008044 -0 . |
[5] | 关俊, 李念武, 于乐. 人工界面层在金属锂负极中的应用[J]. 物理化学学报, 2021, 37(2): 2009011 -0 . |
[6] | 何一涛, 丁飞, 林立, 王志红, 吕喆, 张耀辉. 电极界面浓差极化对锂金属沉积的影响[J]. 物理化学学报, 2021, 37(2): 2009001 -0 . |
[7] | 王志达, 冯元宬, 卢松涛, 王锐, 秦伟, 吴晓宏. 利用原位氟化保护层改善三维锡锂合金/碳纸负极贫电解液下性能[J]. 物理化学学报, 2021, 37(2): 2008082 -0 . |
[8] | 华广斌, 樊晏辰, 张千帆. 计算模拟在锂金属负极研究中的应用[J]. 物理化学学报, 2021, 37(2): 2008089 -0 . |
[9] | 孙宇恒, 高铭达, 李慧, 徐丽, 薛晴, 王欣然, 白莹, 吴川. 金属有机骨架材料在金属锂电池界面的应用[J]. 物理化学学报, 2021, 37(1): 2007048 -0 . |
[10] | 张世超, 沈泽宇, 陆盈盈. 金属锂电池的热失控与安全性研究进展[J]. 物理化学学报, 2021, 37(1): 2008065 -0 . |
[11] | 王木钦, 彭哲, 林欢, 李振东, 刘健, 任重民, 何海勇, 王德宇. 一种有助于稳定锂金属循环的富氟化位点框架结构[J]. 物理化学学报, 2021, 37(1): 2007016 -0 . |
[12] | 蔡明俐, 姚柳, 靳俊, 温兆银. 水溶液法原位构建ZnO亲锂层稳定锂-石榴石电解质界面[J]. 物理化学学报, 2021, 37(1): 2009006 -0 . |
[13] | 熊辉, 谢歆雯, 王苗, 侯雅琦, 侯旭. 网状骨架CVD生长碳纳米管用于重盐水脱盐[J]. 物理化学学报, 2020, 36(9): 1912008 -0 . |
[14] | 陈光海,白莹,高永晟,吴锋,吴川. 全固态钠离子电池硫系化合物电解质[J]. 物理化学学报, 2020, 36(5): 1905009 -0 . |
[15] | 费慧芳,刘永鹏,魏传亮,张煜婵,冯金奎,陈传忠,于慧君. 基于聚碳酸丙烯酯基聚合物电解质和有机正极的全固态钠电池[J]. 物理化学学报, 2020, 36(5): 1905015 -0 . |
|