物理化学学报 >> 2021, Vol. 37 >> Issue (8): 2011073.doi: 10.3866/PKU.WHXB202011073
所属专题: 二维光催化材料
收稿日期:
2020-11-28
录用日期:
2020-12-28
发布日期:
2020-12-30
通讯作者:
黄宇
E-mail:huangyu@ieecas.cn
作者简介:
Yu Huang is currently a full professor at Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences. He obtained his Ph.D. degree in 2012 from The Hong Kong Polytechnic University. His research interests include atmospheric VOCs characteristics and environmental effects, indoor air quality, air pollution control research and application
基金资助:
Wei Wang1,2, Yu Huang1,*(), Zhenyu Wang1
Received:
2020-11-28
Accepted:
2020-12-28
Published:
2020-12-30
Contact:
Yu Huang
E-mail:huangyu@ieecas.cn
About author:
Yu Huang, Email: huangyu@ieecas.cn; Tel.: +86-29-6233-6261Supported by:
摘要:
二维石墨相氮化碳(2D g-C3N4)由于其特殊的π-π共轭结构,较窄的禁带宽度(2.7 eV)以及比表面积大、结构稳定、绿色无毒、来源广泛等特点,在光催化领域显示出巨大的应用潜力。然而,传统g-C3N4由于其可见光吸收差、光生载流子复合快、量子效率低等固有缺点导致其光催化性能较差,限制其应用。迄今为止,研究人员已经设计并开发了异质结构建、缺陷工程和形貌调控等多种策略来改善g-C3N4光催化活性。其中,缺陷工程通过调节g-C3N4的表面电子结构和能级结构来提高其光捕获、光生载流子分离-迁移和目标分子吸附/活化能力,从而改善其光催化能力。本文综述了非外源因素诱导(碳空位、氮空位等)以及外源因素诱导缺陷(掺杂和功能化)修饰g-C3N4,调控其光电子及光催化性能的最新研究进展,并介绍了2D g-C3N4在光催化净化大气方面的应用进展。最后,对g-C3N4在光催化领域的后续研究进行了展望。这篇文章的主要目的是为全面、深入地理解缺陷调控g-C3N4光催化性能的机制提供思路,以期更好地指导g-C3N4光催化剂的后续研究及其工商业应用开发。
MSC2000:
王薇, 黄宇, 王震宇. 缺陷工程调控石墨相氮化碳及其光催化空气净化应用进展[J]. 物理化学学报, 2021, 37(8): 2011073.
Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification[J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073.
Fig 1
(a) Pristine g-C3N4 mode. Boron atom substitution doping at (b) two inequivalent carbon sites or (c) three inequivalent nitrogen sites, reproduced with permission from Appl. Catal. B: Environ., Elsevier 7. (d) Carbon- and nitrogen-containing materials obtained from the thermolysis of mercury(II) thiocyanate, adapted from Angew. Chem. Int. Ed., Wiley publisher 6. (e) Electronic band structures of different g-C3N4."
Fig 2
(a) Schematic diagram of efficient solar-to-H2O2 conversion by polymeric carbon nitride with two types of cooperative nitrogen vacancies (NHx vacancy and N2C vacancy), adapted from Appl. Catal. B: Environ., Elsevier 43. (b) SEM images and the visible light photocatalytic NO removal activities of CNT-12, (c) schematic diagram depicting the roles of N-vacancies, (d) proposed reaction pathways for adsorption and the photocatalytic oxidation of NO over CN and CNT-12, reproduced with permission from ACS Appl. Mater. Interfaces, American Chemical Society 48."
Fig 3
(a) Reaction mechanism of carbon vacancies under visible-light irradiation, reproduced with permission from ACS Appl. Nano Mater., American Chemical Society 54. The schematic diagram of SDR-CN (b) and photophysical processes in SDR-CN (c), adapted from Appl. Catal. B: Environ., Elsevier 60. (d) Schematic diagram of TC-HCl and SMZ photodegradation by VN fabricated g-C3N4 with increased crystallinity, adapted from Appl. Surf. Sci., Elsevier 63."
Fig 4
(a) Schematic diagram of photocatalytic removal of NO by intercalated carbon nitride MCN, adapted from Appl. Catal. B: Environ., Elsevier 64. (b) PL spectra and (c) preparation and the photocatalytic NO removal mechanisms of BCNT, reproduced with permission from Appl. Catal. B: Environ., Elsevier 7."
Fig 5
(a) The mechanisms of photocatalytic NO removal on CNCU1, CNCU2, and CNCU3, reproduced with permission from ACS Appl. Mater. Interfaces, American Chemical Society 83. (b) Schematic diagram of photocatalytic H2 evolution by benzene doped g-C3N4, reproduced with permission from J. Mater. Chem. A, Royal Society of Chemistry 87. (c) Schematic diagram of photocatalytic NO removal by pCN/TiO2 nanocomposite film, (d) optical photograph of pCN/TiO2 films, reproduced with permission from Appl. Catal. B: Environ., Elsevier 95."
Fig 6
(a) Aerial view of the coating district and sampling sites, (b) loading of g-C3N4/TiO2 composite sol onto the road via spray method, (c) surface of the concrete barrier coated (upward) with and (nether) without g-C3N4/TiO2 after 4 months, (d) schematic diagram of photocatalytic air-purifying pavement, reproduced with permission from Sol. RRL, Wiley 96."
1 |
Su J. ; Li G.-D. ; Li X.-H. ; Chen J.-S. Adv. Sci. 2019, 6 (7), 1801702.
doi: 10.1002/advs.201801702 |
2 |
Xiong J. ; Di J. ; Xia J. ; Zhu W. ; Li H. Adv. Funct. Mater. 2018, 28 (39), 1801983.
doi: 10.1002/adfm.201801983 |
3 |
Zheng Y. ; Liu J. ; Liang J. ; Jaroniec M. ; Qiao S. Z. Energy Environ. Sci. 2012, 5 (5), 6717.
doi: 10.1039/C2EE03479D |
4 |
Cao S. ; Yu J. J. Phys. Chem. Lett. 2014, 5 (12), 2101.
doi: 10.1021/jz500546b |
5 |
Zhao Z. ; Sun Y. ; Dong F. Nanoscale 2015, 7 (1), 15.
doi: 10.1039/C4NR03008G |
6 |
Wang Y. ; Wang X. ; Antonietti M. Angew. Chem. Int. Ed. 2012, 51 (1), 68.
doi: 10.1002/anie.201101182 |
7 |
Wang Z. ; Chen M. ; Huang Y. ; Shi X. ; Zhang Y. ; Huang T. ; Cao J. ; Ho W. ; Lee S. C. Appl. Catal. B 2018, 239, 352.
doi: 10.1016/j.apcatb.2018.08.030 |
8 |
Tang J.-Y. ; Kong X. Y. ; Ng B.-J. ; Chew Y.-H. ; Mohamed A. R. ; Chai S.-P. Catal. Sci. Technol. 2019, 9 (9), 2335.
doi: 10.1039/C9CY00449A |
9 |
Xue J. ; Fujitsuka M. ; Majima T. Phys. Chem. Chem. Phys. 2019, 21 (5), 2318.
doi: 10.1039/C8CP06922K |
10 |
Wu M. ; Gong Y. ; Nie T. ; Zhang J. ; Wang R. ; Wang H. ; He B. J. Mater. Chem. A 2019, 7 (10), 5324.
doi: 10.1039/C8TA12076E |
11 |
Zhang D. ; Tan G. ; Wang M. ; Li B. ; Dang M. ; Ren H. ; Xia A. Mater. Res. Bull. 2020, 122, 110685.
doi: 10.1016/j.materresbull.2019.110685 |
12 |
Guo Q. ; Zhang Y. ; Zhang H.-S. ; Liu Y. ; Zhao Y.-J. ; Qiu J. ; Dong G. Adv. Funct. Mater. 2017, 27 (42), 1703711.
doi: 10.1002/adfm.201703711 |
13 |
Ong W.-J. ; Tan L.-L. ; Ng Y. H. ; Yong S.-T. ; Chai S.-P. Chem. Rev. 2016, 116 (12), 7159.
doi: 10.1021/acs.chemrev.6b00075 |
14 |
Martin D. J. ; Qiu K. ; Shevlin S. A. ; Handoko A. D. ; Chen X. ; Guo Z. ; Tang J. Angew. Chem. Int. Ed. 2014, 53 (35), 9240.
doi: 10.1002/anie.201403375 |
15 |
Frank S. N. ; Bard A. J. J. Am. Chem. Soc. 1977, 99 (14), 4667.
doi: 10.1021/ja00456a024 |
16 |
Huang Y. ; Zhu D. ; Zhang Q. ; Zhang Y. ; Cao J.-J. ; Shen Z. ; Ho W. ; Lee S. C. Appl. Catal. B 2018, 234, 70.
doi: 10.1016/j.apcatb.2018.04.039 |
17 |
Huang Y. ; Liang Y. ; Rao Y. ; Zhu D. ; Cao J.-J. ; Shen Z. ; Ho W. ; Lee S. C. Environ. Sci. Technol. 2017, 51 (5), 2924.
doi: 10.1021/acs.est.6b04460 |
18 |
Huang Y. ; Wang W. ; Zhang Q. ; Cao J.-J. ; Huang R.-J. ; Ho W. ; Lee S. C. Sci. Rep. 2016, 6 (1), 23435.
doi: 10.1038/srep23435 |
19 |
Wang X. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M. Nat. Mater. 2009, 8 (1), 76.
doi: 10.1038/nmat2317 |
20 |
Wang Y. ; Rao L. ; Wang P. ; Shi Z. ; Zhang L. Appl. Catal. B 2020, 262, 118308.
doi: 10.1016/j.apcatb.2019.118308 |
21 |
Peng G. ; Wu J. ; Wang M. ; Niklas J. ; Zhou H. ; Liu C. Nano Lett. 2020, 20 (4), 2879.
doi: 10.1021/acs.nanolett.0c00698 |
22 |
Wang Z. ; Huang Y. ; Ho W. ; Cao J. ; Shen Z. ; Lee S. C. Appl. Catal., B 2016, 199, 123.
doi: 10.1016/j.apcatb.2016.06.027 |
23 |
Wang Z. ; Huang Y. ; Chen L. ; Chen M. ; Cao J. ; Ho W. ; Lee S. C. J. Mater. Chem. A 2018, 6 (3), 972.
doi: 10.1039/C7TA09132J |
24 |
Lei F. ; Sun Y. ; Liu K. ; Gao S. ; Liang L. ; Pan B. ; Xie Y. J. Am. Chem. Soc. 2014, 136 (19), 6826.
doi: 10.1021/ja501866r |
25 | Wang Y. ; Shen S. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905080. |
王亦清; 沈少华; 物理化学学报, 2020, 36 (3), 1905080.
doi: 10.3866/PKU.WHXB201905080 |
|
26 |
Zhang C. ; Li Y. ; Shuai D. ; Shen Y. ; Xiong W. ; Wang L. Chemosphere 2019, 214, 462.
doi: 10.1016/j.chemosphere.2018.09.137 |
27 |
Jourshabani M. ; Lee B.-K. ; Shariatinia Z. Appl. Catal. B 2020, 276, 119157.
doi: 10.1016/j.apcatb.2020.119157 |
28 |
He D. ; Zhang C. ; Zeng G. ; Yang Y. ; Huang D. ; Wang L. ; Wang H. Appl. Catal. B 2019, 258, 117957.
doi: 10.1016/j.apcatb.2019.117957 |
29 |
Li Y. ; Li X. ; Zhang H. ; Fan J. ; Xiang Q. J. Mater. Sci. Technol. 2020, 56, 69.
doi: 10.1016/j.jmst.2020.03.033 |
30 |
Tang S. ; Zhu Y. ; Li H. ; Xu H. ; Yuan S. Int. J. Hydrog. Energy 2019, 44 (59), 30935.
doi: 10.1016/j.ijhydene.2019.10.020 |
31 |
Dong G. ; Shibuya R. ; Akiba C. ; Saji S. ; Kondo T. ; Nakamura J. Science 2016, 351 (6271), 361.
doi: 10.1126/science.aad0832 |
32 |
Liao J. ; Cui W. ; Li J. ; Sheng J. ; Wang H. ; Dong X. A. ; Chen P. ; Jiang G. ; Wang Z. ; Dong F. Chem. Eng. J. 2020, 379, 122282.
doi: 10.1016/j.cej.2019.122282 |
33 |
Cao J. ; Pan C. ; Ding Y. ; Li W. ; Lv K. ; Tang H. J. Environ. Chem. Eng. 2019, 7 (2), 102984.
doi: 10.1016/j.jece.2019.102984 |
34 |
Cao J. ; Nie W. ; Huang L. ; Ding Y. ; Lv K. ; Tang H. Appl. Catal. B 2019, 241, 18.
doi: 10.1016/j.apcatb.2018.09.007 |
35 | Huang J. ; Du J. ; Du H. ; Xu G. ; Yuan Y. Acta Phys. -Chim. Sin. 2020, 36 (7), 1905056. |
黄娟娟; 杜建梅; 杜海威; 徐更生; 袁玉鹏; 物理化学学报, 2020, 36 (7), 1905056.
doi: 10.3866/PKU.WHXB201905056 |
|
36 |
Mo R. ; Li J. ; Tang Y. ; Li H. ; Zhong J. Appl. Surf. Sci. 2019, 476, 552.
doi: 10.1016/j.apsusc.2019.01.085 |
37 |
Li H. ; Jin C. ; Wang Z. ; Liu Y. ; Wang P. ; Zheng Z. ; Whangbo M.-H. ; Kou L. ; Li Y. ; Dai Y. ; et al Chem. Eng. J. 2019, 369, 263.
doi: 10.1016/j.cej.2019.03.095 |
38 |
Zhang J. ; Huang Y. ; Nie T. ; Wang R. ; He B. ; Han B. ; Wang H. ; Tian Y. ; Gong Y. Appl. Surf. Sci. 2020, 499, 143942.
doi: 10.1016/j.apsusc.2019.143942 |
39 |
Wang H. ; Li M. ; Li H. ; Lu Q. ; Zhang Y. ; Yao S. Mater. Des. 2019, 162, 210.
doi: 10.1016/j.matdes.2018.11.049 |
40 |
Zhou C. ; Zeng Z. ; Zeng G. ; Huang D. ; Xiao R. ; Cheng M. ; Zhang C. ; Xiong W. ; Lai C. ; Yang Y. ; et al J. Hazard. Mater. 2019, 380, 120815.
doi: 10.1016/j.jhazmat.2019.120815 |
41 |
Zhang Y. ; Gao J. ; Chen Z. J. Colloid Interface Sci. 2019, 535, 331.
doi: 10.1016/j.jcis.2018.10.012 |
42 |
Wu J. ; Li N. ; Fang H.-B. ; Li X. ; Zheng Y.-Z. ; Tao X. Chem. Eng. J. 2019, 358, 20.
doi: 10.1016/j.cej.2018.09.208 |
43 |
Zhang X. ; Zhao R. ; Zhang N. ; Su Y. ; Liu Z. ; Gao R. ; Du C. Appl. Catal. B 2020, 263, 118316.
doi: 10.1016/j.apcatb.2019.118316 |
44 |
Xie Y. ; Li Y. ; Huang Z. ; Zhang J. ; Jia X. ; Wang X.-S. ; Ye J. Appl. Catal. B 2020, 265, 118581.
doi: 10.1016/j.apcatb.2019.118581 |
45 |
Ho W. ; Zhang Z. ; Lin W. ; Huang S. ; Zhang X. ; Wang X. ; Huang Y. ACS Appl. Mater. Interfaces 2015, 7 (9), 5497.
doi: 10.1021/am509213x |
46 |
Liang L. ; Shi L. ; Wang F. ; Yao L. ; Zhang Y. ; Qi W. Int. J. Hydrog. Energy 2019, 44 (31), 16315.
doi: 10.1016/j.ijhydene.2019.05.001 |
47 |
Xue Y. ; Kong X. ; Guo Y. ; Liang Z. ; Cui H. ; Tian J. J. Materiomics 2020, 6 (1), 128.
doi: 10.1016/j.jmat.2020.01.006 |
48 |
Wang Z. ; Huang Y. ; Chen M. ; Shi X. ; Zhang Y. ; Cao J. ; Ho W. ; Lee S. C. ACS Appl. Mater. Interfaces 2019, 11 (11), 10651.
doi: 10.1021/acsami.8b21987 |
49 |
Guo S. ; Zhang H. ; Yang P. ; Chen Y. ; Yu X. ; Yu B. ; Zhao Y. ; Yang Z. ; Liu Z. Catal. Sci. Technol. 2019, 9 (10), 2485.
doi: 10.1039/C8CY02509F |
50 |
Shan X. ; Ge G. ; Zhao Z. ChemCatChem 2019, 11 (5), 1534.
doi: 10.1002/cctc.201801803 |
51 |
Yang Z. ; Chu D. ; Jia G. ; Yao M. ; Liu B. Appl. Surf. Sci. 2020, 504, 144407.
doi: 10.1016/j.apsusc.2019.144407 |
52 |
Tian Y. ; Zhou L. ; Zhu Q. ; Lei J. ; Wang L. ; Zhang J. ; Liu Y. Nanoscale 2019, 11 (43), 20638.
doi: 10.1039/C9NR06802C |
53 |
Liu M. ; Zhang D. ; Han J. ; Liu C. ; Ding Y. ; Wang Z. ; Wang A. Chem. Eng. J. 2020, 382, 123017.
doi: 10.1016/j.cej.2019.123017 |
54 |
Liang X. ; Wang G. ; Dong X. ; Wang G. ; Ma H. ; Zhang X. ACS Appl. Nano Mater. 2019, 2 (1), 517.
doi: 10.1021/acsanm.8b02089 |
55 |
Shen M. ; Zhang L. ; Wang M. ; Tian J. ; Jin X. ; Guo L. ; Wang L. ; Shi J. J. Mater. Chem. A 2019, 7 (4), 1556.
doi: 10.1039/C8TA09302D |
56 |
Jiang L. ; Li J. ; Wang K. ; Zhang G. ; Li Y. ; Wu X. Appl. Catal. B 2020, 260, 118181.
doi: 10.1016/j.apcatb.2019.118181 |
57 |
Zhang Y. ; Di J. ; Ding P. ; Zhao J. ; Gu K. ; Chen X. ; Yan C. ; Yin S. ; Xia J. ; Li H. J. Colloid Interface Sci. 2019, 553, 530.
doi: 10.1016/j.jcis.2019.06.012 |
58 |
Lei J. ; Chen B. ; Lv W. ; Zhou L. ; Wang L. ; Liu Y. ; Zhang J. ACS Sustain. Chem. Eng. 2019, 7 (19), 16467.
doi: 10.1021/acssuschemeng.9b03678 |
59 |
Wang X. ; Wu L. ; Wang Z. ; Wu H. ; Zhou X. ; Ma H. ; Zhong H. ; Xing Z. ; Cai G. ; Jiang C. ; et al Sol. RRL 2019, 3 (4), 1800298.
doi: 10.1002/solr.201800298 |
60 |
Sun H. ; Wei K. ; Wu D. ; Jiang Z. ; Zhao H. ; Wang T. ; Zhang Q. ; Wong P. K. Appl. Catal. B 2020, 264, 118480.
doi: 10.1016/j.apcatb.2019.118480 |
61 |
Zhang Y. ; Wu L. ; Zhao X. ; Zhao Y. ; Tan H. ; Zhao X. ; Ma Y. ; Zhao Z. ; Song S. ; Wang Y. ; et al Adv. Energy Mater. 2018, 8 (25), 1801139.
doi: 10.1002/aenm.201801139 |
62 |
Lin L. ; Yu Z. ; Wang X. Angew. Chem. Int. Ed. 2019, 58 (19), 6164.
doi: 10.1002/anie.201809897 |
63 |
Wang Y. ; Rao L. ; Wang P. ; Guo Y. ; Shi Z. ; Guo X. ; Zhang L. Appl. Surf. Sci. 2020, 505, 144576.
doi: 10.1016/j.apsusc.2019.144576 |
64 |
Zhou M. ; Dong G. ; Ma J. ; Dong F. ; Wang C. ; Sun J. Appl. Catal. B 2020, 273, 119007.
doi: 10.1016/j.apcatb.2020.119007 |
65 |
Zhang H. ; Tang Y. ; Liu Z. ; Zhu Z. ; Tang X. ; Wang Y. Chem. Phys. Lett. 2020, 751, 137467.
doi: 10.1016/j.cplett.2020.137467 |
66 |
Feng Q. J. Phys.: Condens. Matter 2020, 32 (44), 445602.
doi: 10.1088/1361-648x/aba387 |
67 |
Panigrahi P. ; Kumar A. ; Karton A. ; Ahuja R. ; Hussain T. Int. J. Hydrog. Energy 2020, 45 (4), 3035.
doi: 10.1016/j.ijhydene.2019.11.184 |
68 |
Wang X. ; Li D. ; Nan Z. Sep. Purif. Technol. 2019, 224, 152.
doi: 10.1016/j.seppur.2019.04.088 |
69 |
Hu C. ; Wang M.-S. ; Chen C.-H. ; Chen Y.-R. ; Huang P.-H. ; Tung K.-L. J. Membr. Sci. 2019, 580, 1.
doi: 10.1016/j.memsci.2019.03.012 |
70 |
Wang H. ; Bu Y. ; Wu G. ; Zou X. Dalton Trans. 2019, 48 (31), 11724.
doi: 10.1039/C9DT01261C |
71 |
Lv H. ; Huang Y. ; Koodali R. T. ; Liu G. ; Zeng Y. ; Meng Q. ; Yuan M. ACS Appl. Mater. Interfaces 2020, 12 (11), 12656.
doi: 10.1021/acsami.9b19057 |
72 |
Chu K. ; Li Q.-Q. ; Liu Y.-P. ; Wang J. ; Cheng Y.-H. Appl. Catal. B 2020, 267, 118693.
doi: 10.1016/j.apcatb.2020.118693 |
73 |
Li Z. ; Gu G. ; Hu S. ; Zou X. ; Wu G. Chin. J. Catal. 2019, 40 (8), 1178.
doi: 10.1016/S1872-2067(19)63364-4 |
74 |
Hu X. ; Zhang W. ; Yong Y. ; Xu Y. ; Wang X. ; Yao X. Appl. Surf. Sci. 2020, 510, 145413.
doi: 10.1016/j.apsusc.2020.145413 |
75 |
Iqbal W. ; Yang B. ; Zhao X. ; Rauf M. ; Mohamed I. M. A. ; Zhang J. ; Mao Y. Catal. Sci. Technol. 2020, 10 (2), 549.
doi: 10.1039/C9CY02111F |
76 |
Lin W. ; Lu K. ; Zhou S. ; Wang J. ; Mu F. ; Wang Y. ; Wu Y. ; Kong Y. Appl. Surf. Sci. 2019, 474, 194.
doi: 10.1016/j.apsusc.2018.03.140 |
77 |
Zhou P. ; Meng X. ; Li L. ; Sun T. J. Alloys Compd. 2020, 827, 154259.
doi: 10.1016/j.jallcom.2020.154259 |
78 |
Wang K. ; Fu J. ; Zheng Y. Appl. Catal. B 2019, 254, 270.
doi: 10.1016/j.apcatb.2019.05.002 |
79 |
Chen D. ; Liu J. ; Jia Z. ; Fang J. ; Yang F. ; Tang Y. ; Wu K. ; Liu Z. ; Fang Z. J. Hazard. Mater. 2019, 361, 294.
doi: 10.1016/j.jhazmat.2018.09.006 |
80 |
Yu Y. ; Wu S. ; Gu J. ; Liu R. ; Wang Z. ; Chen H. ; Jiang F. J. Hazard. Mater. 2020, 384, 121247.
doi: 10.1016/j.jhazmat.2019.121247 |
81 |
Phang S. J. ; Tan L.-L. Catal. Sci. Technol. 2019, 9 (21), 5882.
doi: 10.1039/C9CY01452G |
82 |
Dong G. ; Zhao L. ; Wu X. ; Zhu M. ; Wang F. Appl. Catal. B 2019, 245, 459.
doi: 10.1016/j.apcatb.2019.01.013 |
83 |
Zhao L. ; Dong G. ; Zhang L. ; Lu Y. ; Huang Y. ACS Appl. Mater. Interfaces 2019, 11 (10), 10042.
doi: 10.1021/acsami.9b00111 |
84 |
Liu J. ; Xiong C. ; Jiang S. ; Wu X. ; Song S. Appl. Catal. B 2019, 249, 282.
doi: 10.1016/j.apcatb.2019.03.014 |
85 |
Li X.-H. ; Chen W.-L. ; He P. ; Wang T. ; Liu D. ; Li Y.-W. ; Li Y.-G. ; Wang E.-B. Inorg. Chem. Front. 2019, 6 (11), 3315.
doi: 10.1039/C9QI01093A |
86 |
Vu N.-N. ; Nguyen C.-C. ; Kaliaguine S. ; Do T.-O. ChemSusChem 2019, 12 (1), 291.
doi: 10.1002/cssc.201802394 |
87 |
Bellamkonda S. ; Shanmugam R. ; Gangavarapu R. R. J. Mater. Chem. A 2019, 7 (8), 3757.
doi: 10.1039/C8TA10580D |
88 |
Zhang Y. ; Thomas A. ; Antonietti M. ; Wang X. J. Am. Chem. Soc. 2009, 131 (1), 50.
doi: 10.1021/ja808329f |
89 |
Ge G. ; Zhao Z. Catal. Sci. Technol. 2019, 9 (2), 266.
doi: 10.1039/C8CY02006J |
90 |
Li W. ; Guo Z. ; Jiang L. ; Zhong L. ; Li G. ; Zhang J. ; Fan K. ; Gonzalez S. ; Jin K. ; Xu C. ; et al Chem. Sci. 2020, 11 (10), 2716.
doi: 10.1039/C9SC05060D |
91 |
Xing W. ; Tu W. ; Ou M. ; Wu S. ; Yin S. ; Wang H. ; Chen G. ; Xu R. ChemSusChem 2019, 12 (9), 2029.
doi: 10.1002/cssc.201801431 |
92 |
Zhou P. ; Hou X. ; Chao Y. ; Yang W. ; Zhang W. ; Mu Z. ; Lai J. ; Lv F. ; Yang K. ; Liu Y. ; et al Chem. Sci. 2019, 10 (23), 5898.
doi: 10.1039/C9SC00658C |
93 |
Zhou P. ; Lv F. ; Li N. ; Zhang Y. ; Mu Z. ; Tang Y. ; Lai J. ; Chao Y. ; Luo M. ; Lin F. ; et al Nano Energy 2019, 56, 127.
doi: 10.1016/j.nanoen.2018.11.033 |
94 |
Nguyen C.-C. ; Sakar M. ; Vu M.-H. ; Do T.-O. Ind. Eng. Chem. Res. 2019, 58 (9), 3698.
doi: 10.1021/acs.iecr.8b05792 |
95 |
Huang Y. ; Wang P. ; Wang Z. ; Rao Y. ; Cao J.-J. ; Pu S. ; Ho W. ; Lee S. C. Appl. Catal. B 2019, 240, 122.
doi: 10.1016/j.apcatb.2018.08.078 |
96 |
Huang Y. ; Zhang J. ; Wang Z. ; Liu Y. ; Wang P. ; Cao J.-j. ; Ho W. Sol. RRL 2020, 4 (8), 2000170.
doi: 10.1002/solr.202000170 |
97 |
Cao J. ; Huang Y. Sci. Technol. Rev. 2016, 17 (34)
doi: 10.3981/j.issn.1000-7857.2016 |
98 | Huang, Y.; Wang, W.; Zhang, Y.; Cao, J.; Huang, R.; Wang, X. Chapter 10—Synthesis and Applications of Nanomaterials with High Photocatalytic Activity on Air Purification. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications; Wang, X., Chen, X., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp. 299-325. |
[1] | 黄悦, 梅飞飞, 张金锋, 代凯, Graham Dawson. 一维/二维W18O49/多孔g-C3N4梯形异质结构建及其光催化析氢性能研究[J]. 物理化学学报, 2022, 38(7): 2108028 - . |
[2] | 刘珊池, 王凯, 杨梦雪, 靳治良. Mn0.2Cd0.8S@CoAl LDH S-型异质结构建及其光催化析氢性能研究[J]. 物理化学学报, 2022, 38(7): 2109023 - . |
[3] | 沈荣晨, 郝磊, 陈晴, 郑巧清, 张鹏, 李鑫. 高分散Co0.2Ni1.6Fe0.2P助催化剂改性P掺杂g-C3N4纳米片高效光催化析氢的研究[J]. 物理化学学报, 2022, 38(7): 2110014 - . |
[4] | 雷卓楠, 马心怡, 胡晓云, 樊君, 刘恩周. Ni2P-NiS双助剂促进g-C3N4光催化产氢动力学[J]. 物理化学学报, 2022, 38(7): 2110049 - . |
[5] | 熊壮, 侯乙东, 员汝胜, 丁正新, 王伟俊, 汪思波. 空心NiCo2S4纳米球助催化剂担载ZnIn2S4纳米片用于可见光催化制氢[J]. 物理化学学报, 2022, 38(7): 2111021 - . |
[6] | 韩高伟, 徐飞燕, 程蓓, 李佑稷, 余家国, 张留洋. 反蛋白石结构ZnO@PDA用于增强光催化产H2O2性能[J]. 物理化学学报, 2022, 38(7): 2112037 - . |
[7] | 周亮, 李云锋, 张永康, 秋列维, 邢艳. 具有高效界面电荷转移的0D/2D Bi4V2O11/g-C3N4梯形异质结的设计合成及抗生素降解性能研究[J]. 物理化学学报, 2022, 38(7): 2112027 - . |
[8] | 王文亮, 张灏纯, 陈义钢, 史海峰. 具有光催化与光芬顿反应协同作用的2D/2D α-Fe2O3/g-C3N4 S型异质结用于高效降解四环素[J]. 物理化学学报, 2022, 38(7): 2201008 - . |
[9] | 赵娜, 彭静, 王建平, 翟茂林. 羧酸根功能化的PVP-CdS同质结及其高效的光催化析氢性能[J]. 物理化学学报, 2022, 38(4): 2004046 - . |
[10] | 李红英, 龚海明, 靳治良. In2O3修饰三维纳米花MoSx构建S型异质结用于高效光催化产氢[J]. 物理化学学报, 2022, 38(12): 2201037 - . |
[11] | 何科林, 沈荣晨, 郝磊, 李佑稷, 张鹏, 江吉周, 李鑫. 纳米SiC基光催化剂研究进展[J]. 物理化学学报, 2022, 38(11): 2201021 - . |
[12] | 李瀚, 李芳, 余家国, 曹少文. 二维/二维FeNi-LDH/g-C3N4复合光催化剂用于促进CO2光还原反应[J]. 物理化学学报, 2021, 37(8): 2010073 - . |
[13] | 李开宁, 张梦曦, 欧小雨, 李睿娜, 李覃, 范佳杰, 吕康乐. 高活性氮化碳纳米片的制备策略[J]. 物理化学学报, 2021, 37(8): 2008010 - . |
[14] | 郑倩, 曹玥晗, 黄南建, 张瑞阳, 周莹. BN诱导BiOI富氧{110}面的暴露并增强其可见光催化氧化性能[J]. 物理化学学报, 2021, 37(8): 2009063 - . |
[15] | 张鹏, 王继全, 李源, 姜丽莎, 王壮壮, 张高科. 非贵金属助剂Ni2P修饰类石墨碳氮化物光催化剂增强可见光光催化产氢性能[J]. 物理化学学报, 2021, 37(8): 2009102 - . |
|