物理化学学报 >> 2008, Vol. 24 >> Issue (05): 772-780.doi: 10.1016/S1872-1508(08)60034-0

研究论文 上一篇    下一篇

丙二烯分子的模糊对称性

赵学庄; 许秀芳; 尚贞峰; 王贵昌; 李瑞芳   

  1. 南开大学化学系, 天津 300071
  • 收稿日期:2007-11-12 修回日期:2008-01-16 发布日期:2008-05-05
  • 通讯作者: 赵学庄 E-mail:zhaoxzh@nankai.edu.cn

Fuzzy Symmetry Characteristics of Propadine Molecule

ZHAO Xue-Zhuang; XU Xiu-Fang; SHANG Zhen-Feng; WANG Gui-Chang; LI Rui-Fang   

  1. Department of Chemistry, Nankai University, Tianjin 300071, P. R. China
  • Received:2007-11-12 Revised:2008-01-16 Published:2008-05-05
  • Contact: ZHAO Xue-Zhuang E-mail:zhaoxzh@nankai.edu.cn

摘要: 利用作者提出的探讨分子及其轨道模糊对称性的方法分析了丙二烯在内旋转过程中模糊对称性特征. 考虑到此过程中经历不同状态所属的对称点群, 即D2h、D2d与D2. 利用包含这些点群中所有元素的最小点群D4h进行分析. 将D4h中的元素分为四组: (i) G0——包含在D2点群中的元素, 也是所有上述点群中都存在的元素; (ii) G1——包含在D2h点群中, 但不包含在D2d点群中的元素; (iii) G2——包含在D2d点群中, 但不包含在D2h点群中的元素; (iv) G3——包含在D4h点群中, 但不包含在D2h与D2d点群中的元素. 分别分析在内旋转过程中各个分子轨道(MO)相应每一组元素的隶属函数的共性变化规律性.

关键词: 模糊对称性, 丙二烯, 内旋转, 隶属函数

Abstract: The fuzzy symmetry characteristics for the internal-rotation of propadine were analyzed using the fuzzy symmetry theory for molecule and molecular orbital (MO). In the process of rotation, three different symmetry point groups D2h, D2d, and D2 were considered. Using the D4h point group, which is the minimal point group including all symmetry elements of D2h, D2d, and D2, we can analyze the fuzzy symmetry for this process. The elements included in D4h point group can be classified to four subsets of (i) G0——it includes all the elements in D2 point group, also belongs to all the above three point groups of D2h, D2d, and D2; (ii) G1——it includes the elements in D2h point group, but not in D2d point group; (iii) G2——it includes the elements in D2d point group, but not in D2h point group; (iv) G3——it includes the elements in D4h point group, but not in D2h or D2d point group. On the basis of the above four subsets, we analyzed the membership functions and the regularity of variation in MOs for the internal-rotation of propadine.

Key words: Fuzzy symmetry, Propadine, Internal-rotation, Membership functions

MSC2000: 

  • O641