物理化学学报 >> 2010, Vol. 26 >> Issue (09): 2337-2342.doi: 10.3866/PKU.WHXB20100835

电化学 上一篇    下一篇

Pt-Se纳米空球修饰玻碳电极上甲酸的电催化氧化

颜亮亮1, 江庆宁2, 刘德宇2, 钟艳1, 温飞鹏1, 邓小聪1, 钟起玲1, 任斌2, 田中群2   

  1. 1. 江西师范大学化学化工学院,南昌330022;
    2. 厦门大学化学化工学院化学系,固体表面物理化学国家重点实验室, 福建厦门361005
  • 收稿日期:2010-03-11 修回日期:2010-05-14 发布日期:2010-09-02
  • 通讯作者: 钟起玲, 任斌 E-mail:zhqiling@163.com; bren@xmu.edu.cn
  • 基金资助:

    国家自然科学基金(20663002)和厦门大学固体表面物理化学国家重点实验室基金(200511)资助项目

Electrocatalytic Oxidation of Formic Acid on Pt-Se HollowNanosphere Modified Glassy Carbon Electrodes

YAN Liang-Liang1, JIANG Qing-Ning2, LIU De-Yu2, ZHONG Yan1, WEN Fei-Peng1, DENG Xiao-Cong1, ZHONG Qi-Ling1, REN Bin2, TIAN Zhong-Qun2   

  1. 1. College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China;
    2. State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
  • Received:2010-03-11 Revised:2010-05-14 Published:2010-09-02
  • Contact: ZHONG Qi-Ling, REN Bin E-mail:zhqiling@163.com; bren@xmu.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (20663002), Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, China (200511).

摘要:

以无定形硒溶胶为模板制备了不同硒覆盖度(θSe) (θSe=0.49, 0.39, 0.06, 0)的Pt-Se 和Pt 纳米空球(分别记为(Pt-Se)HN和PtHN), 发展了利用亚硫酸盐彻底除去核壳纳米粒子上Se 的方法. 对获得的纳米空球进行了形貌和结构的表征,结果表明所制备的(Pt-Se)HN粒径均匀,分散性好,球壳呈多孔结构.以其作为电催化剂制备了(Pt-Se)HN修饰的玻碳(GC)电极((Pt-Se)HN/GC), 利用常规电化学方法比较该电极与PtHN/GC 和商用碳载铂(Pt/C)修饰GC(Pt/C/GC)电极对甲酸的催化氧化作用, 发现对甲酸氧化的活性顺序为(Pt-Se)HN/GC>PtHN/GC>Pt/C/GC. 三种电极催化甲酸氧化的机理有所不同:前者更倾向于通过弱吸附中间体直接氧化成CO2的单途径机理进行, 后两者则通过强吸附和弱吸附中间体的双途径机理进行. 在一定Se 覆盖度条件下, (Pt-Se)HN/GC 对甲酸的氧化有助催化作用.

关键词: 电催化, Pt-Se 纳米空球, (Pt-Se)HN/GC 电极, 甲酸, 氧化

Abstract:

Platinum-selenium and platinum hollow nanospheres (denoted as (Pt-Se)HN and PtHN, respectively) with different coverages of Se (θSe) (θSe=0.49, 0.39, 0.06, 0) were prepared using amorphous Se colloids as a sacrificial template. Sulfite was used to completely remove Se from the core-shell nanoparticles. The morphology and structure of the nanoparticles were characterized using various methods, which revealed a hollow structure with a very uniform size distribution and a porous structure on the shell. Assembly of Pt-Se hollownanospheres ((Pt-Se)HN) on a glassy carbon (GC) electrode produced a (Pt-Se)HN/GC electrode. The electrocatalytic activity of the electrode for the oxidation of formic acid was compared with the PtHN/GCand commercial Pt/C/GCelectrodes by cyclic voltammetry and chronoamperometry. The activity followed the order: (Pt-Se)HN/GC > PtHN/GC >Pt/C/GC. The electrooxidation of formic acid on (Pt-Se)HN/C, PtHN/C, and Pt/C catalysts follows different mechanisms: the former tends to directly oxidize formic acid to CO2 via weakly adsorbed intermediates, and the latter two via both weakly and strongly adsorbed intermediates. (Pt-Se)HN with a suitable seleniumcontent showed optimal electrocatalytic activity for the oxidation of formic acid.

Key words: Electrocatalysis, Pt-Se hollow nanosphere, (Pt-Se)HN/GC electrode, Formic acid, Oxidation

MSC2000: 

  • O646