物理化学学报 >> 2011, Vol. 27 >> Issue (11): 2677-2681.doi: 10.3866/PKU.WHXB20111014

催化和表面科学 上一篇    下一篇

高比表面积Cr2O3-α-AlF3催化剂的制备和应用

于洪波1, 贾文志1, 普志英2, 王月娟1, 鲁继青1, 滕波涛1, 罗孟飞1   

  1. 1. 浙江师范大学物理化学研究所, 浙江省固体表面反应化学重点实验室, 浙江金华 321004;
    2. 浙江工业大学分析测试研究中心, 浙江杭州 310014
  • 收稿日期:2011-06-28 修回日期:2011-08-11 发布日期:2011-10-27
  • 通讯作者: 罗孟飞 E-mail:mengfeiluo@zjnu.cn
  • 基金资助:

    浙江省自然科学基金(Y4100001)和浙江省科技计划(2009F70004, 2009R50020-6)资助项目

Preparation and Application of a Cr2O3-α-AlF3 Catalyst with a High Specific Surface Area

YU Hong-Bo1, JIAWen-Zhi1, PU Zhi-Ying2, WANG Yue-Juan1, LU Ji-Qing1, TENG Bo-Tao1, LUO Meng-Fei1   

  1. 1. Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang Province, P. R. China;
    2. Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, Zhejiang Province, P. R. China
  • Received:2011-06-28 Revised:2011-08-11 Published:2011-10-27
  • Contact: LUO Meng-Fei E-mail:mengfeiluo@zjnu.cn
  • Supported by:

    The project was supported by the Natural Science Foundation of Zhejiang Province, China (Y4100001) and Science Technology Planning Project of Zhejiang Province, China (2009F70004, 2009R50020-6).

摘要: 采用炭硬模板法制备了高比表面积Cr2O3-α-AlF3催化剂. 该催化剂的合成过程主要包括三步: (1) 将一定浓度的蔗糖溶液浸渍到Cr2O3-γ-Al2O3中, 然后经过热处理, 使得蔗糖分解为炭; (2) 将含炭的Cr2O3-γ-Al2O3固体在400°C用HF气体进行完全氟化; (3) 在高温下利用燃烧法除去炭硬模板. 对所制备的催化剂进行了X射线衍射(XRD), 氮气吸脱附曲线, 氨气程序升温脱附(NH3-TPD), 透射电镜(TEM), 扫描电镜(SEM)和X射线能量散射(EDX)技术表征. 结果表明, 氟化过程对Cr2O3-α-AlF3催化剂比表面积有重要影响, 在最佳实验条件下, 能够得到比表面积为115 m2·g-1的催化剂. 此催化剂对催化裂解二氟乙烷(HFC-152a)制备氟乙烯(VF)的催化活性明显高于直接氟化制备的Cr2O3-α-AlF3催化剂, 这是因为高比表面积的Cr2O3-α-AlF3催化剂具有较大的酸量.

关键词: Cr2O3-&, alpha, -AlF3, 高比表面积, 路易斯酸, 二氟乙烷裂解, X射线衍射

Abstract: A high specific surface area Cr2O3-α-AlF3 catalyst was prepared using a carbon hard template method. The synthesis procedure consisted of three consecutive steps: (1) the impregnation of a sucrose (C12H22O11) aqueous solution with Cr2O3-γ-Al2O3 and subsequent thermal treatment; (2) the thermal treatment of the obtained solid with HF, C@Cr2O3-γ-Al2O3 can be completely transformed into C@Cr2O3-γ-AlF3 at 400°C with hydrogen fluoride; (3) the removal of the carbon template in C@Cr2O3-γ- AlF3 upon high temperature combustion giving the high surface area Cr2O3-γ-AlF3 (115 m2·g-1). The catalysts were characterized by X-ray diffraction (XRD), N2 physisorption, ammonia temperatureprogrammed desorption (NH3-TPD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersion X-ray (EDX) techniques. We found that the fluorination process was crucial for the resulting Cr2O3-α-AlF3 with a high specific surface area of 115 m2·g-1 under optimal conditions. The Cr2O3-α-AlF3 catalyst with a high specific surface area was more active for the decomposition of 1,1-difluoroethane than the catalyst prepared by the direct fluorination of Cr2O3-γ-Al2O3, because it contained a higher amount of acid sites.

Key words: Cr2O3-&, alpha, -AlF3, High specific surface area, Lewis acid, CH3CHF2 decomposition, X-ray diffraction

MSC2000: 

  • O643