Please wait a minute...
物理化学学报  2012, Vol. 28 Issue (01): 1-18    DOI: 10.3866/PKU.WHXB2012281
综述     
原子电荷计算方法的对比
卢天, 陈飞武
北京科技大学化学与生物工程学院, 北京 100083
Comparison of Computational Methods for Atomic Charges
LU Tian, CHEN Fei-Wu
School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
 全文: PDF(803 KB)   输出: BibTeX | EndNote (RIS) |
摘要: 原子电荷是对化学体系中电荷分布最简单、最直观的描述形式之一, 在理论和实际应用中都有重要意义. 本文介绍了12种重要的原子电荷计算方法的原理和特点, 通过大量实例从不同角度比较了它们的优缺点.这些方法包括Mulliken、分子环境中的原子轨道(AOIM)、Hirshfeld、原子偶极矩校正的Hirshfeld 布居(ADCH)、自然布居分析(NPA)、Merz-Kollmann (MK)、分子中的原子(AIM)、Merck 分子力场94 (MMFF94)、AM1-BCC、Gasteiger、电荷模型2(CM2)以及电荷均衡(QEq)方法. 最后本文对如何在实际应用中选择合适的计算方法给出了建议.
关键词: 原子电荷计算化学布居分析电负性静电势    
Abstract: Atomic charge is one of the simplest and the most intuitive description of charge distribution in chemical systems. It has great significance in theory and in practical applications. In this article we introduce the basic principles and special characteristics of twelve important computational methods for the determination of atomic charges and compare their pros and cons from various aspects by considering a large number of instances. These methods include Mulliken, atomic orbitals in molecules (AOIM), Hirshfeld, atomic dipole moment corrected Hirshfeld population (ADCH), natural population analysis (NPA), Merz-Kollmann (MK), atom in molecules (AIM), Merck molecular force field 94 (MMFF94), AM1-BCC, Gasteiger, charge model 2 (CM2), and charge equilibration (QEq). Finally some general suggestions on how to choose a proper method for practical applications are given.
Key words: Atomic charge    Computational chemistry    Population analysis    Electronegativity    Electrostatic potential
收稿日期: 2011-09-13 出版日期: 2011-10-31
中图分类号:  O641  
基金资助:

国家自然科学基金(20773011)资助项目

通讯作者: 陈飞武     E-mail: chenfeiwu@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卢天
陈飞武

引用本文:

卢天, 陈飞武. 原子电荷计算方法的对比[J]. 物理化学学报, 2012, 28(01): 1-18.

LU Tian, CHEN Fei-Wu. Comparison of Computational Methods for Atomic Charges. Acta Phys. Chim. Sin., 2012, 28(01): 1-18.

链接本文:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/10.3866/PKU.WHXB2012281        http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/Y2012/V28/I01/1

(1) Qian, B. H.; Ma,W. X.; Lu, L. D.; Yang, X. J.;Wang, X. Acta Phys. -Chim. Sin. 2010, 26, 610. [钱保华, 马卫兴, 陆路德, 杨绪杰, 汪信. 物理化学学报, 2010, 26, 610.]
(2) Zheng,W. R.; Xu, J. L.; Xiong, R. Acta Phys. -Chim. Sin. 2010, 26, 2535. [郑文锐, 徐菁利, 熊瑞. 物理化学学报, 2010, 26, 2535.]
(3) Shen, T.; Du, F. P.; Liu, T.; Yao, G.W.;Wu, Z.; Fang, M. M.; Xu, X. J.; Lu, H. Z. Acta Phys. -Chim. Sin. 2011, 27, 1831. [申涛, 杜凤沛, 刘婷, 姚广伟, 吴峥, 方萌萌, 徐筱杰, 路慧哲. 物理化学学报, 2011, 27, 1831.]
(4) Zhou, J. J.; Chen, H. M.; Xie, G. R.; Ren, T. R.; Xu, Z. H. Prog. Chem. 1998, 10, 55. [周家驹, 陈红明, 谢桂荣, 任天瑞, 许志宏. 化学进展, 1998, 10, 55.]
(5) Ji, G. D.; Zhao, Y. H.; Yuan, X. J. Northeast Normal Univ. (Natural Science Edition) 1998, 47. [籍国东, 赵元慧, 袁星. 东北师范大学学报(自然科学版), 1998, 47.]
(6) Ding, Y. F.; Zhang, Y.; Zhang, D. H.; Li, Z. P. Acta Phys. -Chim. Sin. 2010, 26, 1651. [丁元法, 张跃, 张大海, 李仲平. 物理化学学报, 2010, 26, 1651.]
(7) Laio, A.; VandeVondele, J.; Rothlisberger, U. J. Phys. Chem. B 2002, 106, 7300.  
(8) Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916.  
(9) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys. Rev. B 1998, 58, 7260.  
(10) Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. 1995, 99, 7137.  
(11) Giesen, D. J.; Hawkins, G. D.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. Theor. Chem. Acc. 1997, 98, 85.  
(12) Li, J. B.; Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. Chem. Phys. Lett. 1998, 288, 293.  
(13) Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6532.  
(14) Meister, J.; Schwarz,W. H. E. J. Phys. Chem. 1994, 98, 8245.  
(15) Cramer, C. J. Essentials of Computational Chemistry, 2nd ed.; JohnWiley & Sons:West Sussex, 2004; pp 309-324.
(16) Jensen, F. Introduction to Computational Chemistry, 2nd ed.; JohnWiley & Sons:West Sussex, 2007; pp 293-304.
(17) Young, D. C. Computational Chemistry; JohnWiley & Sons: New York, 2001; pp 99-105.
(18) Cioslowski, J. ElectronicWavefunction Analysis. In Encyclopedia of Computational Chemistry; Schleyer, P. v. R. Ed.; JohnWiley & Sons:West Sussex, 1998; Vol. 2, pp 892-905.
(19) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1841.  
(20) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.  
(21) Mulliken, R. S. J. Chem. Phys. 1955, 23, 2338.  
(22) Bachrach, S. M. Population Analysis and Electron Densities from Quantum Mechanics. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B. Eds.; VCH Publishers: New York, 1994; Vol. 5, pp 171-227.
(23) Clark, A. E.; Sonnenberg, J. L.; Hay, P. J.; Martin, R. L. J. Chem. Phys. 2004, 121, 2563.  
(24) Martin, F.; Zipse, H. J. Comput. Chem. 2005, 26, 97.  
(25) Wiberg, K. B.; Rablen, P. R. J. Comput. Chem. 1993, 14, 1504.  
(26) Lu, H. G.; Dai, D. D.; Yang, P.; Li, L. M. Phys. Chem. Chem. Phys. 2006, 8, 340.
(27) Hirshfeld, F. L. Theor. Chem. Acc. 1977, 44, 129.  
(28) Lu, T.; Chen, F.W. J. Theor. Comput. Chem. Accepted.
(29) Reed, A. E.;Weinstock, R. B.;Weinhold, F. J. Chem. Phys. 1985, 83, 735.  
(30) Besler, B. H.; Merz, K. M., Jr.; Kollman, P. A. J. Comput. Chem. 1990, 11, 431.  
(31) Bader, R. F.W.; Beddall, P. M. J. Chem. Phys. 1972, 56, 3320.  
(32) Halgren, T. A. J. Comput. Chem. 1996, 17, 520.  
(33) Halgren, T. A. J. Comput. Chem. 1996, 17, 616.  
(34) Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2000, 21, 132.  
(35) Jakalian, A.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2002, 23, 1623.  
(36) Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219.  
(37) Li, J. B.; Zhu, T. H.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 1998, 102, 1820.  
(38) Rappe, A. K.; Goddard,W. A. J. Phys. Chem. 1991, 95, 3358.  
(39) Cusachs, L. C.; Politzer, P. Chem. Phys. Lett. 1968, 1, 529.  
(40) Stout, E.W.; Politzer, P. Theor. Chem. Acc. 1968, 12, 379.  
(41) Doggett, G. J. Chem. Soc. A 1969, 229.
(42) Christoffersena, R. E.; Baker, K. A. Chem. Phys. Lett. 1971, 8, 4.  
(43) Bickelhaupt, F. M.; van Eikema Hommes, N. J. R.; Fonseca Guerra, C.; Baerends, E. J. Organometallics 1996, 15, 2923.  
(44) Weinhold, F. Natural Bond Orbital Methods. In Encyclopedia of Computational Chemistry; Schleyer, P. v. R. Ed.; JohnWiley & Sons:West Sussex, 1998; Vol. 2 pp 1792-1811.
(45) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.;Weinhold, F. NBO, Version 5.0, 2001. http://www.chem.wisc.edu/-nbo5/.
(46) Liu,W.; Li, L. Theor. Chem. Acc. 1997, 95, 81.  
(47) Sanchez-Portal, D.; Artacho, E.; Soler, J. M. Solid State Commun. 1995, 95, 685.  
(48) Sanchez-Portal, D.; Artacho, E.; Soler, J. M. J. Phys.: Condens. Matter 1996, 8, 3859.  
(49) Bader, F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, 1994.
(50) Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8879.  
(51) Davidson, E. R.; Chakravorty, S. Theor. Chem. Acc. 1992, 83, 319.  
(52) Chirlian, L. E.; Francl, M. M. J. Comput. Chem. 1987, 8, 894.  
(53) Breneman, C. M.;Wiberg, K. B. J. Comput. Chem. 1990, 11, 361.  
(54) Sigfridsson, E.; Ryde, U. J. Comput. Chem. 1998, 19, 377.  
(55) Bayly, C. I.; Cieplak, P.; Cornell,W.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269.  
(56) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.  
(57) Storer, J.W.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. J. Comput. -Aided Mol. Des. 1995, 9, 87.  
(58) Li, J. B.;Williams, B.; Cramer, C. J.; Truhlar, D. G. J. Chem. Phys. 1999, 110, 724.  
(59) Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Comput. Chem. 2003, 24, 1291.  
(60) Winget, P.; Thompson, J. D.; Xidos, J. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 2002, 106, 10707.  
(61) Kalinowski, J. A.; Lesyng, B.; Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 2545.  
(62) Olson, R. M.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2046.  
(63) Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 1133.  
(64) Mayer, I. Chem. Phys. Lett. 1983, 97, 270.  
(65) Sanderson, R. T. Science 1951, 114, 670.  
(66) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard,W. A.; Skiff,W. M. J. Am. Chem. Soc. 1992, 114, 10024.  
(67) Mortier,W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315.  
(68) Cioslowski, J. Phys. Rev. Lett. 1989, 62, 1469.  
(69) Cioslowski, J. J. Am. Chem. Soc. 1989, 111, 8333.  
(70) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry, 1st rev ed.; Dover Publications: New York, 1989.
(71) Hariharan, P. C.; Pople, J. A. Theor. Chem. Acc. 1973, 28, 213.  
(72) Hehre,W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.  
(73) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.  
(74) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revison E.01; Gaussian Inc.:Wallingford, CT, 2004.
(75) Lu, T. Multiwfn, Version 2.1.2; 2011. http://Multiwfn.codeplex. com.
(76) Keith, T. A. AIMALL, Version 10.05.04, 2010.
(77) Lu, H. G. AOIM, Version 1.1, 2006; http://faculty.sxu.cn/luhg/ aoim.html.
(78) Avogadro: an Open-Source Molecular Builder and Visualization Tool, Version 1.0.3, 2011.
(79) Case, D. A.; Darden, T. A.; Cheatham, T. E. C. III., et al . AmberTools, Version 1.5; 2011.
(80) Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.  
(81) PETRA Manual. http://www2.ccc.uni-erlangen.de/software/ petra/manual (accessed Sep 12, 2011).
(82) Marsili, M.; Gasteiger, J. Croat. Chem. Acta 1980, 53, 601.
(83) The Open Babel Package, Version 2.3.0; 2010. http://openbabel. sourceforge.net.
(84) Sanner, M. F. J. Mol. Graph. Modal. 1999, 17, 57.
(85) Woods, R. J.; Khalil, M.; Pell,W.; Moffat, S. H.; Smith, V. H. J. Comput. Chem. 1990, 11, 297.  
(86) Hehre,W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 2657.  
(87) Binkley, J. S.; Pople, J. A.; Hehre,W. J. J. Am. Chem. Soc. 1980, 102, 939.  
(88) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chern. Phys. 1980, 72, 650.  
(89) Dunning, J. T. H. J. Chem. Phys. 1989, 90, 1007.  
(90) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.  
(91) Becke, A. D. Phys. Rev. A 1988, 38, 3098.  
(92) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.  
(93) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.  
(94) Patel, S.; Brooks, C. L. Mol. Simul. 2006, 32, 231.  
(95) Stewart, J. J. P. Int. J. Quantum Chem. 1996, 58, 133.  
(96) Biegler-König, F.W. J. Comput. Chem. 2000, 21, 1040.  
(97) Biegler-König, F.W.; Bader, R. F.W.; Tang, T. H. J. Comput. Chem. 1982, 3, 317.  
(98) Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. J. Comput. Chem. 2007, 28, 899.  
(99) Maseras, F.; Morokuma, K. Chem. Phys. Lett. 1992, 195, 500.  
[1] 曹静思, 韦美菊, 陈飞武. 极性分子键角与键偶极矩的关系[J]. 物理化学学报, 2016, 32(7): 1639-1648.
[2] 丁万见, 方维海, 柴之芳, 王东琪. 采用12种密度泛函理论方法表征三种三价铀复合物[J]. 物理化学学报, 2015, 31(7): 1283-1301.
[3] 许振, 陈宇, 张昭, 张鉴清. 欠电位沉积研究现状——I.欠电位沉积理论[J]. 物理化学学报, 2015, 31(7): 1219-1230.
[4] 刘芬, 邹建卫, 胡桂香, 蒋勇军. 有机污染物在碳纳米管吸附的定量结构-性质关系[J]. 物理化学学报, 2014, 30(9): 1616-1624.
[5] 付蓉, 卢天, 陈飞武. 亲电取代反应中活性位点预测方法的比较[J]. 物理化学学报, 2014, 30(4): 628-639.
[6] 吴选军, 赵鹏, 方继敏, 王杰, 刘保顺, 蔡卫权. 新型掺杂多孔芳香骨架材料的储氢性能模拟[J]. 物理化学学报, 2014, 30(11): 2043-2054.
[7] 刘良红, 张鹏飞, 黄莺. 用密度泛函活性理论和Hammett常数预测单双取代苯酚的酸性[J]. 物理化学学报, 2013, 29(03): 508-515.
[8] 何婧, 徐志广, 曾允秀, 许旋, 喻兰, 王琦, 刘海洋. 取代基对咔咯锰(V)-氧配合物Mn―O的成键影响[J]. 物理化学学报, 2012, 28(07): 1658-1664.
[9] 赵高峰, 王银亮, 孙建敏, 王渊旭. Au12M (M=Na, Mg, Al, Si, P, S, Cl)团簇的结构、稳定性和电子性质[J]. 物理化学学报, 2012, 28(06): 1355-1360.
[10] 鲍建樟, 丰鑫田, 于建国. GPU引发的计算化学革命[J]. 物理化学学报, 2011, 27(09): 2019-2026.
[11] 李亚娜, 吕洋, 周立川, 陈理, 李慎敏. 用第一性原理方法获取周期体系中原子的部分电荷[J]. 物理化学学报, 2010, 26(10): 2793-2800.
[12] 孙颖, 任爱民, 闵春刚, 邹陆一, 任雪峰. 海萤荧光素衍生物发光反应关键步骤的理论研究[J]. 物理化学学报, 2010, 26(10): 2779-2786.
[13] 吴阳, 张甜甜, 于宁. 1-乙基-3-甲基咪唑阳离子与天冬酰胺阴离子的相互作用[J]. 物理化学学报, 2009, 25(08): 1689-1696.
[14] 刘述斌. 概念密度泛函理论及近来的一些进展[J]. 物理化学学报, 2009, 25(03): 590-600.
[15] 余德才;曹文娟;余旭东. 原子核强度电势和原子价层电量对元素电负性的标度[J]. 物理化学学报, 2009, 25(01): 155-160.