Please wait a minute...
物理化学学报  2012, Vol. 28 Issue (10): 2249-2257    DOI: 10.3866/PKU.WHXB201209171
理论与计算化学     
一种计算水溶解度的经验加合模型的适用范围与局限
段宝根, 李嫣, 李婕, 程铁军, 王任小
中国科学院上海有机化学研究所, 生命有机化学国家重点实验室, 上海 200032
An Empirical Additive Model for Aqueous Solubility Computation: Success and Limitations
DUAN Bao-Gen, LI Yan, LI Jie, CHENG Tie-Jun, WANG Ren-Xiao
State Key Laboratory of Bioorganic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, P. R. China
 全文: PDF(1431 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

我们发展了一种用于预测有机小分子化合物水溶解度(logS)的经验方法XLOGS. 它本质上是一种加合模型, 采用83种原子/基团类型和3个校正因子作为模型的描述符.该方法还可以根据一个合适的参照分子的logS实验值来计算未知化合物的logS值. 我们将XLOGS模型在由4171个化合物组成的训练集上进行了参数化, 多元线性回归获得的相关系数R2和标准偏差SD分别为0.82和0.96单位. 将该训练集进一步分为仅含液体化合物和仅含固体化合物的两个子集. XLOGS模型在这两个子集上的回归结果显示前者优于后者(标准偏差分别为0.65单位和0.94单位). 还利用log1/S和logP(脂水分配系数)之间的差值来研究XLOGS方法在液体和固体化合物数据集上的表现. 研究结果表明: XLOGS等加合法模型更适合应用于这两者差值接近于0的化合物. 我们还将XLOGS和其他三种流行的logS计算模型(包括Qikprop, MOE-logS和ALOGPS)在一个含有132个类药化合物的独立测试集上进行了比较. 总体而言, 我们的研究结果为加合法模型在水溶解度预测方面的合理应用提供了指导.

关键词: 水溶解度加合法模型XLOGS    
Abstract:

We have developed a new empirical model, namely XLOGS, for computing aqueous solubility (logS) of organic compounds. This model is essentially an additive model, which employs a total of 83 atom/ group types and three correction factors as descriptors. Furthermore, it computes the logS value of a query compound by using the known logS value of an appropriate reference molecule as a starting point. XLOGS was calibrated on a training set of 4171 compounds with known logS values. The squared correlation coefficient (R2) and standard deviation (SD) in regression were 0.82 and 0.96 log units, respectively. The entire training set was further split into one subset containing liquid compounds only and another subset containing solid compounds only. Regression results of XLOGS were obviously better on the former subset (SD=0.65 vs 0.94 log units). The difference between log1/S and logP (partition coefficient, the ratio of concentrations of a compound in a mixture of water and n-octanol at equilibrium) was used as an indicator to investigate the performance of XLOGS on liquid compounds and solid compounds. Our results suggested that an additive model like XLOGS performed most satisfactorily when this difference was close to zero. Three other logS models, including Qikprop, MOE-logS, and ALOGPS, were also compared with XLOGS on an independent test set of 132 drug-like compounds. Put together, our study provides some general guidance for applying additive models to computation of aqueous solubility.

Key words: Aqueous solubility    Additive model    XLOGS
收稿日期: 2012-07-16 出版日期: 2012-09-17
中图分类号:  O645  
基金资助:

国家自然科学基金(81172984, 21072213, 21002117, 21102168, 21102165)以及国家高技术研究发展计划(863)项目(2012AA020308)资助项目

通讯作者: 王任小     E-mail: wangrx@mail.sioc.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
段宝根
李嫣
李婕
程铁军
王任小

引用本文:

段宝根, 李嫣, 李婕, 程铁军, 王任小. 一种计算水溶解度的经验加合模型的适用范围与局限[J]. 物理化学学报, 2012, 28(10): 2249-2257.

DUAN Bao-Gen, LI Yan, LI Jie, CHENG Tie-Jun, WANG Ren-Xiao. An Empirical Additive Model for Aqueous Solubility Computation: Success and Limitations. Acta Phys. -Chim. Sin., 2012, 28(10): 2249-2257.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201209171        http://www.whxb.pku.edu.cn/CN/Y2012/V28/I10/2249

(1) Lipinski, C. A.; Lombardo, F.; Dominy, B.W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2001, 46, 3. doi: 10.1016/S0169-409X(00)00129-0
(2) Di, L.; Kerns, E. H. Drug Discovery Today 2006, 11, 446. doi: 10.1016/j.drudis.2006.03.004
(3) Delaney, J. S. Drug Discovery Today 2005, 10, 289. doi: 10.1016/S1359-6446(04)03365-3
(4) Kariv, I.; Rourick, R. A.; Kassel, D. B.; Chung, T. D. Comb. Chem. High Throughput Screen 2002, 5, 459.
(5) Hansch, C.; Quinlan, J. E.; Lawrence, G. L. J. Org. Chem. 1968,33, 347. doi: 10.1021/jo01265a071
(6) Ran, Y. Q.; He, Y.; Yang, G.; Johnson, J. L. H.; Yalkowsky, S. H.Chemosphere 2002, 48, 487. doi: 10.1016/S0045-6535(02)00118-2
(7) Abraham, M. H.; Le, J. J. Pharm. Sci. 1999, 88, 868. doi: 10.1002/(ISSN)1520-6017
(8) Jorgensen,W. L.; Duffy, E. M. Bioorg. Med. Chem. Lett. 2000,10, 1155. doi: 10.1016/S0960-894X(00)00172-4
(9) Livingstone, D. J.; Ford, M. G.; Huuskonen, J. J.; Salt, D.W.J. Comput.-Aid. Mol. Des. 2001, 15, 741. doi: 10.1023/A:1012284411691
(10) McFarland, J.W.; Avdeef, A.; Berger, C. M.; Raevsky, O. A.J. Chem. Inf. Comput. Sci. 2001, 41, 1355. doi: 10.1021/ci0102822
(11) Tetko, I. V.; Tanchuk, V. Y.; Kasheva, T. N.; Villa, A. E. P.J. Chem. Inf. Comput. Sci. 2001, 41, 1488. doi: 10.1021/ci000392t
(12) Yaffe, D.; Cohen, Y.; Espinosa, G.; Arenas, A.; Giralt, F.J. Chem. Inf. Comput. Sci. 2001, 41, 1177. doi: 10.1021/ci010323u
(13) Klopman, G.; Zhu, H. J. Chem. Inf. Comp. Sci. 2001, 41, 439.doi: 10.1021/ci000152d
(14) Hou, T. J.; Xia, K.; Zhang,W.; Xu, X. J. J. Chem. Inf. Comput. Sci. 2004, 44, 266. doi: 10.1021/ci034184n
(15) Wang, J. M.; Hou, T. J.; Xu, X. J. J. Chem. Inf. Model. 2009, 49,571. doi: 10.1021/ci800406y
(16) Wang, J. M.; Krudy, G.; Hou, T. J.; Zhang,W.; Holland, G.; Xu,X. J. J. Chem. Inf. Model. 2007, 47, 1395. doi: 10.1021/ci700096r
(17) Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Chem. Phys.2003, 119, 1661. doi: 10.1063/1.1579474
(18) Lüder, K.; Lindfors, L.;Westergren, J.; Nordholm, S.; Kjellander,R. J. Phys. Chem. B 2007, 111, 7303.
(19) Lüder, K.; Lindfors, L.;Westergren, J.; Nordholm, S.; Kjellander,R. J. Phys. Chem. B 2007, 111, 1883. doi: 10.1021/jp0642239
(20) Westergren, J.; Lindfors, L.; Höglund, T.; Lüder, K.; Nordholm,S.; Kjellander, R. J. Phys. Chem. B 2007, 111, 1872. doi: 10.1021/jp064220w
(21) Lüder, K.; Lindfors, L.;Westergren, J.; Nordholm, S.; Persson,R.; Pedersen, M. J. Comput. Chem. 2009, 30, 1859. doi: 10.1002/jcc.v30:12
(22) Palmer, D. S.; Llinas, A.; Morao, I.; Day, G. M.; Goodman, J.M.; Glen, R. C.; Mitchell, J. B. O. Mol. Pharm. 2008, 5, 266.doi: 10.1021/mp7000878
(23) Chebil, L.; Chipot, C.; Archambault, F.; Humeau, C.; Engasser,J. M.; Ghoul, M.; Dehez, F. J. Phys. Chem. B 2010, 114, 12308.doi: 10.1021/jp104569k
(24) Johnson, M. A.; Maggiora, G. M. Concepts and Applications of Molecular Similarity;Wiley: New York, 1990.
(25) Cheng, T. J.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X. L.; Li,Y.;Wang, R. X.; Lai, L. H. J. Chem. Inf. Model. 2007, 47, 2140.doi: 10.1021/ci700257y
(26) Zhu, H.; Sedykh, A.; Chakravarti, S. K.; Klopman, G. Curr. Comput.-Aid. Drug Des. 2005, 1, 3. doi: 10.2174/1573409052952323
(27) Sedykh, A. Y.; Klopman, G. J. Chem. Inf. Model. 2006, 46,1598. doi: 10.1021/ci0505269
(28) Llinas, A.; Glen, R. C.; Goodman, J. M. J. Chem. Inf. Model.2008, 48, 1289. doi: 10.1021/ci800058v
(29) Hopfinger, A. J.; Esposito, E. X.; Llinas, A.; Glen, R. C.;Goodman, J. M. J. Chem. Inf. Model. 2009, 49, 1. doi: 10.1021/ci800436c
(30) Bolton, E. E.;Wang, Y.; Thiessen, P. A.; Bryant, S. H. Annu. Rep. Comput. Chem. 2008, 4, 217. doi: 10.1016/S1574-1400(08)00012-1
(31) Nilakantan, R.; Bauman, N.; Dixon, J. S.; Venkataraghavan, R.J. Chem. Inf. Comput. Sci. 1987, 27, 82. doi: 10.1021/ci00054a008
(32) Faller, B.; Ertl, P. Adv. Drug Deliv. Rev. 2007, 59, 533. doi: 10.1016/j.addr.2007.05.005
(33) Yalkowsky, S. H.; Valvani, S. C. J. Pharm. Sci. 1980, 69, 912.doi: 10.1002/(ISSN)1520-6017
(34) Yalkowsky, S. H.; Valvani, S. C.; Roseman, T. J. J. Pharm. Sci.1983, 72, 866. doi: 10.1002/(ISSN)1520-6017
(35) Lobell, M.; Sivarajah, V. Mol. Divers. 2003, 7, 69. doi: 10.1023/B:MODI.0000006562.93049.36
(36) Meylan,W. M.; Howard, P. H. Perspect. Drug Discov. 2000, 19,67. doi: 10.1023/A:1008715521862
(37) Balakin, K. V.; Savchuk, N. P.; Tetko, I. V. Curr. Med. Chem.2006, 13, 223. doi: 10.2174/092986706775197917
(38) Jain, N.; Yalkowsky, S. H. J. Pharm. Sci. 2001, 90, 234. doi: 10.1002/(ISSN)1520-6017

[1] 辛亮,孙淮. 关于副本交换分子动力学模拟复杂化学反应的研究[J]. 物理化学学报, 2018, 34(10): 1179-1188.
[2] 侯玉翠,么聪菲,吴卫泽. 低共熔溶剂:一种应用在混合物分离过程中的绿色溶剂[J]. 物理化学学报, 2018, 34(8): 873-885.
[3] 杨海宽. 溶液自组装法构筑超分子杂化功能材料[J]. 物理化学学报, 2017, 33(3): 582-589.
[4] 程晓蒙,李宇,陈总,李宏平,郑晓芳. 亚临界和超临界二氧化碳-甲醇混合气相及液相区中甲醇核磁弛豫速率比较研究[J]. 物理化学学报, 2016, 32(11): 2671-2677.
[5] 杨立江,高毅勤. 尿素/氧化三甲胺混合溶剂影响单壁碳纳米管内部水合性质的分子动力学模拟[J]. 物理化学学报, 2016, 32(1): 313-320.
[6] 周瑜,徐静,王楠楠,尉志武. 超额光谱及其研究进展[J]. 物理化学学报, 2016, 32(1): 239-248.
[7] 吕页清, 郑诗礼, 王少娜, 杜浩, 张懿. 氧气在碱溶液中结构与扩散系数的分子动力学模拟[J]. 物理化学学报, 2015, 31(6): 1045-1053.
[8] 孙涛祥, 沈兴海, 陈庆德. CMPO和TBP在离子液体中选择性萃取水溶液中铀酰离子的研究[J]. 物理化学学报, 2015, 31(Suppl): 32-38.
[9] 金青君, 徐旻, 黄馨仪, 李勃天, 王吉帅, 阚成友. 萘酰亚胺类荧光染料及共聚型荧光聚氨酯乳液的合成与性能[J]. 物理化学学报, 2015, 31(5): 989-997.
[10] 李湘奇, 范庆飞, 李广立, 黄瑶翰, 高照, 范希梅, 张朝良, 周祚万. 合成ZnO纳米阵列及刺突状CuO/ZnO异质结[J]. 物理化学学报, 2015, 31(4): 783-792.
[11] 于建华, 范闽光, 李斌, 董丽辉, 张飞跃. 混合相二氧化钛石墨烯复合物的制备及光催化性能[J]. 物理化学学报, 2015, 31(3): 519-526.
[12] 宋大勇, 陈静. 离子液体1-乙基-3-甲基咪唑三氟甲基磺酸盐与水之间的氢键作用[J]. 物理化学学报, 2014, 30(9): 1605-1610.
[13] 范中相, 黄建花. 稀溶液中Rod-Coil-Rod三嵌段共聚物组装结构的耗散粒子动力学模拟[J]. 物理化学学报, 2014, 30(3): 408-412.
[14] 程维娜, 胡新根, 邵爽. 大环疏水效应: 冠醚在DMF+H2O混合物中的焓对作用[J]. 物理化学学报, 2013, 29(10): 2114-2122.
[15] 曾勇平, 时荣, 杨正华. Be2+在水、甲醇和乙醇中结构性质的从头算分子动力学模拟[J]. 物理化学学报, 2013, 29(10): 2180-2186.