Please wait a minute...
物理化学学报  2013, Vol. 29 Issue (01): 43-54    DOI: 10.3866/PKU.WHXB201211121
理论与计算化学     
顺式效应的起源: 双取代乙烯衍生物的密度泛函理论研究
赵东波1, 荣春英1, 苏曼1, 苏文1, 尹笃林1, 刘述斌1,2
1 湖南师范大学化学化工学院, 资源精细化与先进材料湖南省高校重点实验室, 化学生物学及中药分析教育部重点实验室, 长沙 410081;
2 Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, U.S.A.
Origin of the cis-Effect: a Density Functional Theory Study of Doubly Substituted Ethylenes
ZHAO Dong-Bo1, RONG Chun-Ying1, JENKINS Samantha1, KIRK Steven R.1, YIN Du-Lin1, LIU Shu-Bin1,2
1 Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China;
2 Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, U. S. A.
 全文: PDF(1432 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

一般情况下双取代乙烯衍生物的反式构象要比顺式构象稳定. 但是例外也存在, 例如1,2-二氟乙烯和1,2-二氯乙烯. 这种双取代乙烯衍生物顺式构象的超常稳定性被称之为顺式效应. 该效应的起源和本质目前仍没有定论. 本文以12 个体系(XHC=CHY (X, Y=F, Cl, Br, CN, CH3, C2H6, OCH3))为例, 对顺式效应的有效性、起源和本质进行系统的密度泛函理论研究, 其中9个体系存在顺式效应, 另外3个为正常体系没有该效应. 采用一系列泛函和基组研究其有效性, 并运用四种分析手段, 如自然键轨道(NBO)、能量分量分析(EDA)、密度泛函活性理论(DFRT)和非共价相互作用(NCI)分析, 剖析该效应的起源和本质. 发现在顺式构象的两个取代基之间存在一种微弱的非共价相互吸引作用. 能量分析表明, 静电效应、立体效应等对顺式效应的存在都起着重要作用, 但是它们均不能单独用来解释顺式效应的起源. 也就是说顺式效应没有一个简单的起源, 它是多种作用合力的结果. 本文采用双变量解释得到比较合理的相关回归系数R2=0.86-0.87,较好地解释了顺式效应的本质和起源.

关键词: 密度泛函理论顺式效应自然键轨道分析立体效应非共价相互作用    
Abstract:

It is well known that the trans isomer of a doubly substituted ethylene is more stable than its cis counterpart because of the more favorable electrostatic and steric interactions in the trans conformer. Exceptions do exist nevertheless. 1,2-Difluoroethylene is such an example, so is 1,2-dichloroethylene. The unusual stability of the cis isomer of these doubly substituted ethylene compounds is referred to as the cis-effect, whose nature and origin are still not well understood. In this work, using 12 simple molecules, XHC=CHY (X, Y=F, Cl, Br, CN, CH3, OCH3, C2H6), as examples, we perform systematic studies to investigate the validity, nature, and origin of this effect. Among the systems studied, 9 of them exhibit the existence of the cis-effect and the remaining 3 systems are conventional systems used for the comparison purpose. We employ a large number of density functionals and basis sets to confirm its validity. We also use a few well-established analysis tools, such as natural bond orbital (NBO), energy decomposition analysis (EDA), density functional reactivity theory (DFRT), and non-covalent interaction (NCI) analysis, to pinpoint its nature and origin. We found that there exists a weak but attractive non-covalent interaction between the two substituting groups in the cis conformer. We also found that electrostatic, steric, and kinetic energies all play important roles for the validity of the cis-effect. Nevertheless, none of these quantities can be solely used as the single reason governing the general validity of the cis-effect, suggesting that the origin of the effect is complicated and its validity results from compound interactions from a number of interactions. In this work, we employ two-variable explanations to justify its validity through the electrostatic interaction plus steric effect or kinetic energy, with which reasonable fits with R2=0.86-0.87 were obtained.

Key words: Density functional theory    cis-Effect    Natural bond orbital analysis    Steric effect    Non-covalent interaction
收稿日期: 2012-08-21 出版日期: 2012-11-12
中图分类号:  O641  
基金资助:

刘述斌受湖南师范大学“潇湘学者”杰出人才项目(23040609)资助; 赵东波受湖南省研究生创新项目(CX2012B223)资助; 尹笃林受湖南省高等教育机构科技创新研究团队项目的资助, JENKINS Samantha和KIRK Steven R.受湖南省“百人计划”项目资助

通讯作者: 荣春英, 苏文, 刘述斌     E-mail: rongchunying@yahoo.com.cn; stevenrkirk@gmail.com; shubin@email.unc.edu
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵东波
荣春英
苏曼
苏文
尹笃林
刘述斌

引用本文:

赵东波, 荣春英, 苏曼, 苏文, 尹笃林, 刘述斌. 顺式效应的起源: 双取代乙烯衍生物的密度泛函理论研究[J]. 物理化学学报, 2013, 29(01): 43-54, 10.3866/PKU.WHXB201211121

ZHAO Dong-Bo, RONG Chun-Ying, JENKINS Samantha, KIRK Steven R., YIN Du-Lin, LIU Shu-Bin. Origin of the cis-Effect: a Density Functional Theory Study of Doubly Substituted Ethylenes. Acta Phys. -Chim. Sin., 2013, 29(01): 43-54, 10.3866/PKU.WHXB201211121.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201211121        http://www.whxb.pku.edu.cn/CN/Y2013/V29/I01/43

(1) (a) Craig, N. C.; Entemann, E. A. J. Am. Chem. Soc. 1961, 83,3047. doi: 10.1021/ja01475a019
(b) Craig, N. C.; Overend, J. J. Chem. Phys. 1969, 51, 1127.
(c) Craig, N. C.; Piper, L. G.; Wheeler, V. L. J. Phys. Chem.1971, 76, 1453.
(d) Craig, N. C.; Chen, A.; Suh, K. H.; Klee, S.; Mellau, G.;Winnewiser, B. P.;Winnewisser, M. J. Phys. Chem. A 1997,101, 9302.
(e) Craig, N. C.; Brandon, D.W.; Stone, S. C.; Lafferty,W. J.J. Phys. Chem. 1992, 96, 1598.
(2) Craig, N. C.; Lo, Y. S.; Piper, L. G.; Wheeler, J. C. J. Phys. Chem. 1970, 74, 1712. doi: 10.1021/j100703a011
(3) (a)Wood, R. E.; Stevenson, D. P. J. Am. Chem. Soc. 1941, 63,1650. doi: 10.1021/ja01851a042
(b) Gardner, D. V.; McGreer, D. E. Can. J. Chem. 1970, 48,2104.
(4) (a) Salomma, P.; Nissi, P. Acta Chim. Scand. 1967, 21, 1386.doi: 10.3891/acta.chem.scand.21-1386
(b) Crump, J.W. J. Org. Chem. 1963, 28, 953.
(c) Harwell, K. E.; Hatch, L. F. J. Am. Chem. Soc. 1955, 77,1682.
(5) Waldron, J. T.; Snyder,W. H. J. Am. Chem. Soc. 1973, 95, 5491.doi: 10.1021/ja00798a010
(6) Huber-Wälchli, P.; Günthard, H. H. Spectrochim. Acta 1981,37, 285. doi: 10.1016/0584-8539(81)80159-6
(7) Durig, J. R.; Liu, J.; Little, T. S.; Kalasinsky, V. F. J. Phys. Chem. 1992, 96, 8224. doi: 10.1021/j100200a006
(8) Connor, T. M.; McLauchlan, K. A. J. Phys. Chem. 1965, 69,1888. doi: 10.1021/j100890a018
(9) Epiotis, N. D. J. Am. Chem. Soc. 1973, 95, 3087. doi: 10.1021/ja00791a001
(10) Kollman, P. A. J. Am. Chem. Soc. 1974, 96, 4363. doi: 10.1021/ja00821a003
(11) Bemardi, F.; Bottoni, A.; Epiotis, N. D.; Guena, M. J. Am. Chem. Soc. 1978, 100, 6018. doi: 10.1021/ja00487a007
(12) (a) Cremer, D. J. Am. Chem. Soc. 1981, 103, 3633. doi: 10.1021/ja00403a003
(b) Cremer, D. Chem. Phys. Lett. 1981, 81, 481.
(13) Carlos, J. L.; Karl, R. R.; Bauer, S. H. J. Chem. Soc. Faraday Trans. 2 1974, 2, 177.
(14) Gandhi, S. R.; Benzel, M. A.; Dykstra, C. E.; Fukunaga, T.J. Phys. Chem. 1982, 86, 3121. doi: 10.1021/j100213a013
(15) Saebø, S.; Sellers, H. J. Phys. Chem. 1988, 92, 4269. doi: 10.1021/j100326a006
(16) Dixon, D. A.; Smart, B. E.; Fukunaga, T. Chem. Phys. Lett.1986, 125, 447. doi: 10.1016/0009-2614(86)87076-2
(17) Yamamoto, T.; Kaneno, D.; Tomoda, S. Chem. Lett. 2005, 34,1190. doi: 10.1246/cl.2005.1190
(18) Parr, R. G.; Yang,W. Density-Functional Theory of Atoms andMolecules. In International Series of Monographs on Chemistry;Clarendon Press: Oxford, England, 1989; Vol.16, p 333.
(19) Liu, S. B. J. Chem. Phys. 2007, 126, 244103. doi: 10.1063/1.2747247
(20) Liu, S. B.; Govind, N.; Pedersen, L. G. J. Chem. Phys. 2008,129, 094104. doi: 10.1063/1.2976767
(21) Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010, 114,5913. doi: 10.1021/jp101329f
(22) Ess, D. H.; Liu, S. B.; DeProft, F. J. Phys. Chem. A 2010, 114,12952. doi: 10.1021/jp108577g
(23) Tsirelson,V. G.; Stash, A. I.; Liu, S. B. J. Chem. Phys. 2010,133, 114110. doi: 10.1063/1.3492377
(24) Huang, Y.; Zhong, A. G.; Yang, Q. S.; Liu, S. B. J. Chem. Phys.2011, 134, 084103. doi: 10.1063/1.3555760
(25) Torrent-Sucarrat, M.; Liu, S. B.; DeProft, F. J. Phys. Chem. A2009, 113, 3698. doi: 10.1021/jp8096583
(26) Hohenberg, P.; Kohn,W. Phys. Rev. B 1964, 136, 864.doi: 10.1103/PhysRev.136.B864
(27) Becke, A. D. Modern Electronic Structure Theory; Yarkony, D.R. Ed.;World Scientific: River Edge, N. J., 1995; pp 1022-1046.
(28) Cohen, A. J.; Mori-Sánchez, P.; Yang,W. Science 2008, 321,792. doi: 10.1126/science.1158722
(29) Xu, H. Y.;Wang,W. Acta Phys. -Chim. Sin. 2011, 27, 2565.[许惠英, 王维. 物理化学学报, 2011, 27, 2565.] doi: 10.3866/PKU.WHXB20111127
(30) Bader, R. F.W.; Essén, H. J. Chem. Phys. 1984, 80, 1943. doi: 10.1063/1.446956
(31) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García,J.; Cohen, A. J.; Yang,W. J. Am. Chem. Soc. 2010, 132, 6498.doi: 10.1021/ja100936w
(32) Geerlings, P.; DeProft, F.; Langenaeker,W. Chem. Rev. 2003,103, 1793. doi: 10.1021/cr990029p
(33) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
(34) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.doi: 10.1063/1.464303
(35) Dunning, T. H., Jr.; Hay, P. J. Modern Theoretical Chemistry;Schaefer, H. F., III. Ed.; Plenum: New York, 1976; Vol. 3, pp1-28.
(36) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian-09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2009.
(37) NBO Version 3.1, Glendening, E. D.; Reed, A. E.; Carpenter, J.E.;Weinhold, F. doi: 10.3878/j.issn.1006-9585.2012.11212
(38) Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma,T. P.; van Dam, H. J. J.;Wang, D.; Nieplocha, J.; Apra, E.;Windus, T. L.; De Jong,W. A. Comput. Phys. Commun. 2010,181, 1477. doi: 10.1016/j.cpc.2010.04.018
(39) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153
(40) NBO Version 5.0, Glendening, E. D.; Badenhoop, J. K.; Reed,A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.;Weinhold, F. (Theoretical Chemistry Institute, University ofWisconsin, Madison, WI, 2001). http://www.chem.wisc.edu/-nbo5.
(41) Weinhold, F.; Landis, C. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge UniversityPress: UK, 2005.
(42) Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.;Piquemal, J. P.; Beratan, D. N.; Yang,W. J. Chem. Theory Comput. 2011, 7, 625. doi: 10.1021/ct100641a
(43) Humphrey,W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996,14, 133.
(44) AIMAll (Version 11.08.23), Keith, T. A. TK Gristmill Software,Overland Park KS, USA, 2012 (aim.tkgristmill.com); Bader, R.F.W. Atoms inMolecules: AQuantum Theory; Oxford UniversityPress: Oxford, 1990; Popeplier, P. L.; Hall, P. Atoms in Molecules: An Introduction; London, 2000; Matta, C. F., Boyd, R. J. Eds.;The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design;Wiley:Weinham, 2007.
(45) Feller, D.; Peterson, K. A.; Dixon, D. A. J. Phys. Chem. A 2011,115, 1440.
(46) (a) Liu, S. B. Phys. Rev. A 1996, 54, 1328. doi: 10.1103/PhysRevA.54.1328
(b) Liu, S. B.; Parr, R. G. Phys. Rev. A 1996, 53, 2211.
(c) Nagy, A.; Liu, S. B.; Parr, R. G. Phys. Rev. A 1999, 59, 3349.
(d) Liu, S. B.; Morrison, R. C.; Parr, R. G. J. Chem. Phys. 2006,125, 174109.
(47) (a) Liu, S. B.; Pedersen, L. G. J. Phys. Chem. A 2009, 113,3648. doi: 10.1021/jp811250r
(b) Liu, S. B.; Schauer, C. K.; Pedersen, L. G. J. Chem. Phys.2009, 131, 164107.
(c) Burger, S. K.; Liu, S. B.; Ayers, P.W. J. Phys. Chem. A 2011,115, 1293.
(d) Huang, Y.; Liu, L.; Liu,W.; Liu, S. G.; Liu, S. B. J. Phys. Chem. A 2011, 115, 14697.
(e) Huang, Y.; Liu, L.; Liu, S. B. Chem. Phys. Lett. 2012, 527,73.

[1] 许文武,高嶷. 巯基保护的中空金纳米球[J]. 物理化学学报, 2018, 34(7): 770-775.
[2] 卢天,陈沁雪. 通过价层电子密度分析展现分子电子结构[J]. 物理化学学报, 2018, 34(5): 503-513.
[3] 尹玥琪,蒋梦绪,刘春光. Keggin型多酸负载的单原子催化剂(M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-)活化氮气分子的密度泛函理论计算研究[J]. 物理化学学报, 2018, 34(3): 270-277.
[4] 尹凡华,谭凯. 符合独立五元环规则的C100(417)Cl28形成机理的密度泛函理论研究[J]. 物理化学学报, 2018, 34(3): 256-262.
[5] 钟爱国,李嵘嵘,洪琴,张杰,陈丹. 从能量和信息理论视角理解单取代烷烃的异构化[J]. 物理化学学报, 2018, 34(3): 303-313.
[6] 丁晓琴,丁俊杰,李大禹,潘里,裴承新. 基于概念密度泛函理论磷酸酯类反应性物质毒性预测[J]. 物理化学学报, 2018, 34(3): 314-322.
[7] 王心怡,谢磊,丁元琪,姚心仪,张弛,孔惠慧,王利坤,许维. 超高真空条件下碱基与金属在Au(111)表面的相互作用[J]. 物理化学学报, 2018, 34(12): 1321-1333.
[8] 陈驰,张雪,周志有,张新胜,孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[9] 刘玉玉,李杰伟,薄一凡,杨磊,张效霏,解令海,仪明东,黄维. 芴基张力半导体结构和光电性质的理论研究[J]. 物理化学学报, 2017, 33(9): 1803-1810.
[10] 徐位云,汪丽莉,宓一鸣,赵新新. Fe原子吸附对单层WS2结构和性质的影响[J]. 物理化学学报, 2017, 33(9): 1765-1772.
[11] 韩波,程寒松. 镍族金属团簇在催化加氢过程中的应用[J]. 物理化学学报, 2017, 33(7): 1310-1323.
[12] 郭姿含,胡竹斌,孙真荣,孙海涛. 有机半导体的电子电离能、亲和势和极化能的密度泛函理论研究[J]. 物理化学学报, 2017, 33(6): 1171-1180.
[13] 韩磊,彭丽,蔡凌云,郑旭明,张富山. 液态聚乙二醇CH2剪切振动和扭转振动——拉曼光谱和密度泛函理论计算[J]. 物理化学学报, 2017, 33(5): 1043-1050.
[14] 陈爱喜,汪宏,段赛,张海明,徐昕,迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.
[15] 李玲玲,陈韧,戴戬,孙野,张作良,李晓亮,聂小娃,宋春山,郭新闻. 苯和甲醇在H-ZSM-5催化剂上甲基化的反应机理[J]. 物理化学学报, 2017, 33(4): 769-779.