Please wait a minute...
物理化学学报  2013, Vol. 29 Issue (02): 293-297    DOI: 10.3866/PKU.WHXB201211142
电化学和新能源     
纳米MnO锂离子电池负极材料的制备与性能
丁朋1,2,3, 徐友龙1,2, 孙孝飞1,2
1 西安交通大学电子陶瓷与器件教育部重点实验室, 西安 710049;
2 西安交通大学国际电介质研究中心, 西安 710049;
3 武汉军械士官学校电源教研室, 武汉 430075
Synthesis and Performance of Nano MnO as an Anode Material for Lithium-Ion Batteries
DING Peng1,2,3, XU You-Long1,2, SUN Xiao-Fei1,2
1 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi’an 710049, P. R. China;
2 International Center for Dielectric Research, Xi'an Jiaotong University, Xi’an 71004
9. P. R. China;
3 Department of Power, Wuhan Ordnance Non-Commissioned Officer Academy, Wuhan 430075, P. R. China
 全文: PDF(705 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

以高锰酸钾和抗坏血酸合成的MnC2O4·2H2O为前驱体, 通过固相烧结制备了纳米MnO材料. 分别采用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒电流充放电技术考察了其晶相结构、颗粒形貌和电化学性能.分析结果表明, 该纳米MnO具有面心立方的岩盐结构, 结晶度良好. 其颗粒是由粒径为50-100 nm的一次颗粒结合而成的二次颗粒, 大小约为400-600 nm. 当充放电电流密度为46.3 mA·g-1时, 纳米MnO的首次库仑效率可达68.9%, 可逆比容量为679.7 mAh·g-1. 在141.1 mA·g-1的电流密度下循环50圈后, 比容量由584.5mAh·g-1降至581.5 mAh·g-1, 容量保持率高达99.5%, 表现出优异的循环性能. 此外, 当电流密度增加到494.7 mA·g-1 (~2C)时, 其比容量依然可达290 mAh·g-1, 表现出较好的倍率性能和快速充放电能力. 因此, 纳米MnO具有比容量高、循环稳定、倍率性能好和安全环保等优点,是一种非常有前景的锂离子电池负极材料.

关键词: 一氧化锰纳米材料转化反应锂离子电池负极材料    
Abstract:

Transition metal oxides, especially manganese monoxide (MnO), are being intensively studied as candidate anode materials for next generation lithium-ion batteries in high efficiency energy storage applications such as portable electronics, electric vehicles, and stationary electricity storage. In this paper, the MnC2O4·2H2O precursor, prepared fromKMnO4 and ascorbic acid, was heat-treated to synthesize nano MnO by a solid-state reaction approach. X-ray diffraction (XRD) showed that the so-obtained MnO had a rock-salt structure with good crystallinity, and scanning electron microscopy (SEM) indicated that the primary particle size was about 50-100 nm, while the secondary particle size was about 400-600 nm. As an active material for lithium-ion batteries, the nano MnO material delivered a reversible capacity of 679.7 mAh·g-1 with an initial columbic efficiency of 68.9% at a current density of 46.3 mA·g-1. The specific discharge capacity slightly decreased from 584.5 to 581.5 mAh·g-1 with a retention of 99.5% after 50 cycles at a current density of 141.1 mA·g-1. Moreover, the material was able to release a capacity of 290 mAh·g-1 at current densities as high as 494.7 mA·g-1 (corresponding to ~2C), which demonstrates reasonable rate performance and moderately fast charge/discharge capabilities. All of the above characteristics make nano MnO promising anode materials for developing high-capacity, long-life, low-cost, and environmentally-friendly lithium-ion batteries.

Key words: Manganese monoxide    Nano material    Conversion reaction    Lithium-ion battery    Anode material
收稿日期: 2012-09-10 出版日期: 2012-11-14
中图分类号:  O646  
通讯作者: 徐友龙     E-mail: ylxu@mail.xjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
丁朋
徐友龙
孙孝飞

引用本文:

丁朋, 徐友龙, 孙孝飞. 纳米MnO锂离子电池负极材料的制备与性能[J]. 物理化学学报, 2013, 29(02): 293-297.

DING Peng, XU You-Long, SUN Xiao-Fei. Synthesis and Performance of Nano MnO as an Anode Material for Lithium-Ion Batteries. Acta Phys. -Chim. Sin., 2013, 29(02): 293-297.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201211142        http://www.whxb.pku.edu.cn/CN/Y2013/V29/I02/293

(1) Wang, B.;Wu, X. L.; Shu, C. Y.; Guo, Y. G.;Wang, C. R.Journal of Materials Chemistry 2010, 20, 10661. doi: 10.1039/c0jm01941k
(2) Guo, Y. G.; Hu, Y. S.; Sigle,W.; Maier, J. Advanced Materials2007, 19, 2087.
(3) Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced Materials2010, 22, E28.
(4) Li, H.;Wang, Z.; Chen, L.; Huang, X. Advanced Materials2009, 21, 4593. doi: 10.1002/adma.v21:45
(5) Maier, J. Nat. Mater 2005, 4, 805. doi: 10.1038/nmat1513
(6) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M.Nature 2000, 407, 496. doi: 10.1038/35035045
(7) Li, H.; Balaya, P.; Maier, J. Journal of the Electrochemical Society 2004, 151, A1878.
(8) Wang, H.; Pan, Q.; Zhao, J.; Chen,W. Journal of Alloys and Compounds 2009, 476, 408. doi: 10.1016/j.jallcom.2008.09.013
(9) Tang, X.; Pan, Q.; Liu, J. Journal of the Electrochemical Society2010, 157, A55.
(10) Yu, X. Q.; He, Y.; Sun, J. P.; Tang, K.; Li, H.; Chen, L. Q.;Huang, X. J. Electrochemistry Communications 2009, 11, 791.doi: 10.1016/j.elecom.2009.01.040
(11) Poizot, P.; Laruelle, S.; Grugeon, S.; Tarascon, J. M. Journal of the Electrochemical Society 2002, 149, A1212.
(12) Zhong, K.; Xia, X.; Zhang, B.; Li, H.;Wang, Z.; Chen, L.Journal of Power Sources 2010, 195, 3300. doi: 10.1016/j.jpowsour.2009.11.133
(13) Zhong, K.; Zhang, B.; Luo, S.;Wen,W.; Li, H.; Huang, X.;Chen, L. Journal of Power Sources 2011, 196, 6802. doi: 10.1016/j.jpowsour.2010.10.031
(14) Ding, Y. L.;Wu, C. Y.; Yu, H. M.; Xie, J.; Cao, G. S.; Zhu, T. J.;Zhao, X. B.; Zeng, Y.W. Electrochimica Acta 2011, 56, 5844.doi: 10.1016/j.electacta.2011.04.071
(15) Li, X.; Li, D.; Qiao, L.;Wang, X.; Sun, X.;Wang, P.; He, D.Journal of Materials Chemistry 2012, 22, 9189. doi: 10.1039/c2jm30604b
(16) Sun, B.; Chen, Z.; Kim, H. S.; Ahn, H.;Wang, G. Journal of Power Sources 2011, 196, 3346. doi: 10.1016/j.jpowsour.2010.11.090
(17) Ban, C.;Wu, Z.; Gillaspie, D. T.; Chen, L.; Yan, Y.; Blackburn,J. L.; Dillon, A. C. Advanced Materials 2010, 22, E145.
(18) Mai, Y. J.; Tu, J. P.; Xia, X. H.; Gu, C. D.;Wang, X. L. Journal of Power Sources 2011, 196, 6388. doi: 10.1016/j.jpowsour.2011.03.089
(19) Delmer, O.; Balaya, P.; Kienle, L.; Maier, J. Advanced Materials2008, 20, 501.
(20) Lou, X.W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A.Advanced Materials 2008, 20, 258.
(21) Cheng, F.; Huang, K. L.; Liu, S. Q.; Fang, X.S.; Zhang, X. Acta Phys. -Chim. Sin. 2011, 27, 1439. [程凤, 黄可龙, 刘素琴,房雪松, 张新. 物理化学学报, 2011, 27, 1439.] doi: 10.3866/PKU.WHXB20110607
(22) Balaya, P.; Li, H.; Kienle, L.; Maier, J. Advanced Functional Materials 2003, 13, 621.
(23) Jamnik, J.; Maier, J. Physical Chemistry Chemical Physics2003, 5, 5215.
(24) Kokubu, T.; Oaki, Y.; Hosono, E.; Zhou, H.; Imai, H. Advanced Functional Materials 2011, 21, 3673. doi: 10.1002/adfm.201101138
(25) Liu, Y.; Zhao, X.; Li, F.; Xia, D. Electrochimica Acta 2011, 56,6448. doi: 10.1016/j.electacta.2011.04.133
(26) Gao,W. C.; Huang, T.; Shen, Y. D.; Yu, A. S. Acta Phys. -Chim. Sin. 2011, 27, 2129. [高文超, 黄桃, 沈宇栋, 余爱水. 物理化学学报, 2011, 27, 2129.] doi: 10.3866/PKU.WHXB20110933

[1] 陈彦焕,李教富,刘辉彪. 石墨炔-有机共轭分子复合材料的制备及其储锂性能[J]. 物理化学学报, 2018, 34(9): 1074-1079.
[2] 刘双,邵涟漪,张雪静,陶占良,陈军. 水系钠离子电池电极材料研究进展[J]. 物理化学学报, 2018, 34(6): 581-597.
[3] 白华荣,范换换,张晓兵,陈卓,谭蔚泓. 核酸适体-纳米材料复合物用于癌症的诊断与靶向治疗研究进展[J]. 物理化学学报, 2018, 34(4): 348-360.
[4] 张熙悦,黄雅兰,吴树炜,曾银香,于明浩,程发良,卢锡洪,童叶翔. 碳布负载的缺氧型Na2Ti3O7纳米带阵列作为高性能柔性钠离子电池负极材料[J]. 物理化学学报, 2018, 34(2): 219-226.
[5] 陆腾,周永祥,郭洪霞. 聚合物接枝Janus纳米片形变的耗散粒子动力学研究[J]. 物理化学学报, 2018, 34(10): 1144-1150.
[6] 何磊.,徐俊敏.,王永建.,张昌锦.. LiFePO4包覆的Li1.2Mn0.54Ni0.13Co0.13O2锂离子电池正极材料:增强的库伦效率和循环性能[J]. 物理化学学报, 2017, 33(8): 1605-1613.
[7] 田爱华,魏伟,瞿鹏,夏修萍,申琦. SnS2纳米花/石墨烯纳米复合物的一步法合成及其增强的锂离子存储性能[J]. 物理化学学报, 2017, 33(8): 1621-1627.
[8] 廖友好,李伟善. 锂离子电池凝胶聚合物隔膜的研究进展[J]. 物理化学学报, 2017, 33(8): 1533-1547.
[9] 鞠广凯,陶占良,陈军. α-MnO2纳米管自组装微球的可控制备及电化学性能[J]. 物理化学学报, 2017, 33(7): 1421-1428.
[10] 甘永平,林沛沛,黄辉,夏阳,梁初,张俊,王奕顺,韩健峰,周彩红,张文魁. 表面活性剂对氧化铝修饰富锂锰基正极材料的影响[J]. 物理化学学报, 2017, 33(6): 1189-1196.
[11] 谷泽宇,高嵩,黄昊,靳晓哲,吴爱民,曹国忠. 多壁纳米碳管约束二硫化锡作为锂离子电池负极的电化学行为[J]. 物理化学学报, 2017, 33(6): 1197-1204.
[12] 甄绪,郭雪静. 三维介孔钴酸锌立方体的制备及其优异的储锂性能[J]. 物理化学学报, 2017, 33(4): 845-852.
[13] 赵立平,孟未帅,王宏宇,齐力. 二硫化钼-碳复合材料用作钠离子电容电池负极材料[J]. 物理化学学报, 2017, 33(4): 787-794.
[14] 黄浩,龙冉,熊宇杰. 应用于有机加氢反应的等离激元催化材料设计[J]. 物理化学学报, 2017, 33(4): 661-669.
[15] 白雪君,侯敏,刘婵,王彪,曹辉,王东. 锂离子电池用三维氧化锡/石墨烯水凝胶负极材料[J]. 物理化学学报, 2017, 33(2): 377-385.