Please wait a minute...
物理化学学报
催化和表面科学     
氧化石墨烯对水中内分泌干扰物双酚A的吸附性能
徐婧1, 朱永法1,2
1 清华大学化学系, 北京 100084;
2 南京信息工程大学, 大气环境监测与污染控制高技术研究重点实验室, 南京 210044
Elimination of Bisphenol A from Water via Graphene Oxide Adsorption
XU Jing1, ZHU Yong-Fa1,2
1 Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China;
2 Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, P.R. China
 全文: PDF(611 KB)   输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

以氧化石墨烯(GO)为吸附剂, 内分泌干扰物双酚A (BPA)为目标污染物, 考察了GO对水中BPA的吸附性能. 结果表明: GO对BPA的最大吸附量(qm)约为87.80 mg·g-1 (25℃), 30 min左右即可达到吸附平衡, 远快于活性碳; 吸附动力学和等温线数据分别符合准二级动力学模型和Langmuir 吸附模型; 在溶液接近中性和低温的条件下有利于吸附的进行, 在溶液中存在电解质的条件下不利于吸附的进行. GO具有优异的循环吸附性能, 经过多次循环使用后依然可以保持良好的吸附能力. GO对BPA的吸附机理主要是由于GO本身的片状结构以及表面的含氧极性基团, 会与BPA之间产生π-π色散作用和氢键作用. 虽然GO对BPA的吸附能力不如石墨烯, 但是相比于石墨烯, GO表面含有大量极性基团, 具有良好的亲水性, 且GO合成方法相对简单, 可批量生产用于工业污水处理. 因此, 在水处理领域, GO有能力成为新型高效的吸附剂.

关键词: 吸附氧化石墨烯双酚A内分泌干扰物水处理    
Abstract:

The elimination of bisphenol A (BPA) from aqueous solution by adsorption on graphene oxide (GO) was investigated. The maximum adsorption capacity (qm) of GO for BPA estimated from the Langmuir isotherm was 87.80 mg·g-1 at 25℃. The required contact time to reach adsorption equilibrium was about 30 min, which was much shorter than that of activated carbon. The adsorption kinetics and isotherm data fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm, respectively. Neutral pH and low solution temperature were favorable for adsorption, whereas the presence of NaCl in the solution was unfavorable. The GO had good recyclability and could be reused several times with a slight decline in adsorption ability. Both hydrogen bonding and π-π interaction were thought to be responsible for the adsorption of BPA on GO. The excellent adsorption capacity and high adsorption rate of GO result from its sheet-like structure and the abundant oxygen-containing groups on its surface. Although qm of GO for BPA is lower than that of graphene, GO has the benefits of large scale production, a hydrophilic surface with plenty of oxygen-containing groups, and good dispersion in water. Therefore, GO can be regarded as a good potential adsorbent for water treatment.

Key words: Adsorption    Graphene oxide    Bisphenol A    Endocrine-disrupting chemicals    Water treatment
收稿日期: 2012-10-31 出版日期: 2013-01-21
中图分类号:  O647  
基金资助:

国家重点基础研究发展计划(973) (2013CB632403), 国家高技术研究发展计划(863) (2012AA062701), 科技部创新方法工作专项(2009IM030500)及江苏省大气环境监测与污染控制高技术研究重点实验室开放基金(AEMPC201103)资助项目

通讯作者: 朱永法     E-mail: zhuyf@tsinghua.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐婧
朱永法

引用本文:

徐婧, 朱永法. 氧化石墨烯对水中内分泌干扰物双酚A的吸附性能[J]. 物理化学学报, 10.3866/PKU.WHXB201301211.

XU Jing, ZHU Yong-Fa. Elimination of Bisphenol A from Water via Graphene Oxide Adsorption. Acta Phys. Chim. Sin., 10.3866/PKU.WHXB201301211.

链接本文:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/10.3866/PKU.WHXB201301211        http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/Y2013/V29/I04/829

(1) Snyder, S. A.;Westerhoff, P.; Yoon, Y.; Sedlak, D. L. Environ.Sci. Technol. 2003, 20, 449.
(2) Chang, H. S.; Choo, K. H.; Lee, B.; Choi, S. J. J. Hazard.Mater. 2009, 172, 1. doi: 10.1016/j.jhazmat.2009.06.135
(3) Kang, J. H.; Kondo, F.; Katayama, Y. Toxicology 2006, 226, 79.doi: 10.1016/j.tox.2006.06.009
(4) Staples, C. A.; Dorn, P. B.; Klecka, G. M.; O'Block, S. T.;Harris, L. R. Chemosphere 1998, 36, 2149. doi: 10.1016/S0045-6535(97)10133-3
(5) Staples, C. A.; Dorn, P. B.; Klecka, G. M.; O'Block, S. T.;Branson, D. R.; Harris, L. R. Chemosphere 2000, 40, 521. doi: 10.1016/S0045-6535(99)00288-X
(6) Belfroid, A.; van Velzen, M.; van der Horst, B.; Vethaak, D.Chemosphere 2002, 49, 97. doi: 10.1016/S0045-6535(02)00157-1
(7) Pan, B.; Lin, D. H.; Mashayekhi, H.; Xing, B. S. Environ. Sci.Technol. 2009, 43, 5480.
(8) Liu, G. F.; Ma, J.; Li, X. C.; Qin, Q. D. J. Hazard. Mater. 2009,164, 1275. doi: 10.1016/j.jhazmat.2008.09.038
(9) Dong, Y.;Wu, D. Y.; Chen, X. C.; Lin, Y. J. Colloid InterfaceSci. 2010, 348, 585. doi: 10.1016/j.jcis.2010.04.074
(10) Kim, Y. H.; Lee, B.; Choo, K. H.; Choi, S. J. MicroporousMesoporous Mat. 2011, 138, 184. doi: 10.1016/j.micromeso.2010.09.007
(11) El-Naas, M. H.; Al-Muhtaseb, S. A.; Makhlouf, S. J. Hazard.Mater. 2009, 164, 720. doi: 10.1016/j.jhazmat.2008.08.059
(12) Wang, R.; Ren, D.; Xia, S.; Zhang, Y.; Zhao, J. J. Hazard.Mater. 2009, 169, 926. doi: 10.1016/j.jhazmat.2009.04.036
(13) Bautista-Toledo, I.; Ferro-Garcia, M. A.; Rivera-Utrilla, J.;Moreno-Castilla, C.; Vegas Fernandez, F. J. Environ. Sci.Technol. 2005, 39, 6246. doi: 10.1021/es0481169
(14) Pan, B.; Xing, B. S. J. Agric. Food Chem. 2010, 58, 8338. doi: 10.1021/jf101346e
(15) Kuo, C. Y. Desalination 2009, 249, 976. doi: 10.1016/j.desal.2009.06.058
(16) Xu, J.;Wang, L.; Zhu, Y. F. Langmuir 2012, 28, 8418. doi: 10.1021/la301476p
(17) Yuan,W. H.; Li, B. Q.; Li, L. Acta Phys. -Chim. Sin. 2011, 27,2244. [袁文辉, 李保庆, 李莉. 物理化学学报, 2011, 27,2244.] doi: 10.3866/PKU.WHXB20110838
(18) Nakanishi, A.; Tamai, M.; Kawasaki, N.; Nakamura, T.; Tanada,S. J. Colloid Interface Sci. 2002, 252, 393. doi: 10.1006/jcis.2002.8387
(19) Asada, T.; Oikawa, K.; Kawata, K.; Ishihara, S.; Iyobe, T.;Yamada, A. J. Health Sci. 2004, 50, 588. doi: 10.1248/jhs.50.588
(20) Furhacker, M.; Scharf, S.;Weber, H. Chemosphere 2000, 41,751. doi: 10.1016/S0045-6535(99)00466-X
(21) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.;Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S.Nature 2007, 448, 457. doi: 10.1038/nature06016
(22) Dreyer, D. R.; Park, S.; Bielawski, C.W.; Ruoff, R. S. Chem.Soc. Rev. 2010, 39, 228. doi: 10.1039/b917103g
(23) Yang, S. T.; Chang, Y. L.;Wang, H. F.; Liu, G. B.; Chen, S.;Wang, Y.W.; Liu, Y. F.; Cao, A. N. J. Colloid Interface Sci.2010, 351, 122. doi: 10.1016/j.jcis.2010.07.042
(24) Zhang, K.; Dwivedi, V.; Chi, C. Y.;Wu, J. S. J. Hazard. Mater.2010, 182, 162. doi: 10.1016/j.jhazmat.2010.06.010
(25) Nana, Z.; Haixia, Q.; Youmiao, S.;Wei,W.; Jianping, G.Carbon 2011, 49, 827. doi: 10.1016/j.carbon.2010.10.024
(26) Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. J. Hazard.Mater. 2012, 215-216, 272.
(27) Zhang,W.; Zhou, C.; Zhou,W.; Lei, A.; Zhang, Q.;Wan, Q.;Zou, B. Bull. Environ. Contam. Toxicol. 2011, 87, 86. doi: 10.1007/s00128-011-0304-1
(28) Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S. M.; Su,X. J. Colloid Interface Sci. 2012, 368, 540. doi: 10.1016/j.jcis.2011.11.015
(29) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
(30) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. ActaPhys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉,吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812
(31) Sing, K. S.W.; Everett, D. H.; Haul, R. A.W.; Moscou, L.;Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl.Chem. 1985, 57, 603. doi: 10.1351/pac198557040603
(32) Everett, D. H. Basic Principles of Colloid Science; The RoyalSociety of Chemistry: London, 1988.
(33) Fan, X. B.; Peng,W. C.; Li, Y.; Li, X. Y.;Wang, S. L.; Zhang, G.L.; Zhang, F. B. Adv. Mater. 2008, 20, 4490. doi: 10.1002/adma.v20:23
(34) Ho, Y. S.; McKay, G. Water Res. 2000, 34, 735. doi: 10.1016/S0043-1354(99)00232-8
(35) Blanchard, G.; Maunaye, M.; Martin, G. Water Res. 1984, 18,1501. doi: 10.1016/0043-1354(84)90124-6
(36) Zhao, G. X.; Li, J. X.;Wang, X. K. Chem. Eng. J. 2011, 173,185. doi: 10.1016/j.cej.2011.07.072
(37) Langmuir, I. J. Am. Chem. Soc. 1916, 38, 2221. doi: 10.1021/ja02268a002
(38) Freundlich, H. J. Phys. Electrochem. 1906, 57, 385.
(39) Hameed, B. H. J. Hazard. Mater. 2008, 154, 204. doi: 10.1016/j.jhazmat.2007.10.010
(40) Radovic, L. R.; Moreno-Castilla, C.; Rivera-Utrilla, J. CarbonMaterials as Adsorbents in Aqueous Solutions. In Chemistryand Physics of Carbon; Radovic, L. R. Ed.; Marcel Dekker:New York, 2001; Vol. 27, pp 227-405.
(41) Ersoz, A.; Denizli, A.; Sener, I.; Atilir, A.; Diltemiz, S.; Say, R.Sep. Purif. Technol. 2004, 38, 173. doi: 10.1016/j.seppur.2003.11.004
(42) Chandra, V.; Park, J.; Chun, Y.; Lee, J.W.; Hwang, I. C.; Kim,K. S. ACS Nano 2010, 4, 3979. doi: 10.1021/nn1008897
(43) Coughlin, R.W.; Ezra, F. S. Environ. Sci. Technol. 1968, 2, 291.doi: 10.1021/es60016a002

[1] 张晨辉, 赵欣, 雷津美, 马悦, 杜凤沛. 非离子表面活性剂Triton X-100溶液在不同生长期小麦叶片表面的润湿行为[J]. 物理化学学报, 2017, 33(9): 1846-1854.
[2] 姚婵, 李国艳, 许彦红. 富羧酸基团的共轭微孔聚合物:结构单元对孔隙和气体吸附性能的影响[J]. 物理化学学报, 2017, 33(9): 1898-1904.
[3] 韩波, 程寒松. 镍族金属团簇在催化加氢过程中的应用[J]. 物理化学学报, 2017, 33(7): 1310-1323.
[4] 莫周胜, 秦玉才, 张晓彤, 段林海, 宋丽娟. 环己烯对噻吩在CuY分子筛上吸附的影响机制[J]. 物理化学学报, 2017, 33(6): 1236-1241.
[5] 代卫国, 何丹农. 手性布洛芬对映体的选择性光电化学氧化[J]. 物理化学学报, 2017, 33(5): 960-967.
[6] 贺雷, 张向倩, 陆安慧. 二维炭基多孔材料的合成及应用[J]. 物理化学学报, 2017, 33(4): 709-728.
[7] 李一鸣, 陈肖, 刘晓军, 李文有, 贺蕴秋. 氧化石墨烯在氧化锌衬底上的电化学还原及其光电性能[J]. 物理化学学报, 2017, 33(3): 554-562.
[8] 程昉, 王汉奇, 许旷, 何炜. 基于二硫代氨基甲酸盐自组装的糖芯片制备与表征[J]. 物理化学学报, 2017, 33(2): 426-434.
[9] 万秀美, 王丽, 龚晓庆, 逯丹凤, 祁志美. 介孔TiO2薄膜光波导共振传感器对苯并(a)芘的探测灵敏度[J]. 物理化学学报, 2017, 33(12): 2523-2531.
[10] 曹朋飞, 胡杨, 张有为, 彭静, 翟茂林. 无定型钼硫化物/还原氧化石墨烯的辐射合成及其电催化析氢性能[J]. 物理化学学报, 2017, 33(12): 2542-2549.
[11] 张陶娜, 徐雪雯, 董亮, 谭昭怡, 刘春立. 分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J]. 物理化学学报, 2017, 33(10): 2013-2021.
[12] 陈军军, 史成武, 张正国, 肖冠南, 邵章朋, 李楠楠. 4.81%光电转换效率的全固态致密PbS量子点薄膜敏化TiO2纳米棒阵列太阳电池[J]. 物理化学学报, 2017, 33(10): 2029-2034.
[13] 张绍政, 刘佳, 谢艳, 陆银稷, 李林, 吕亮, 杨建辉, 韦世豪. 二维M2XO2-2x(OH)2x(M=Ti,V;X=C,N)析氢催化活性的第一性原理研究[J]. 物理化学学报, 2017, 33(10): 2022-2028.
[14] 李嫣婷, 刘新敏, 田锐, 丁武泉, 修维宁, 唐玲玲, 张静, 李航. 一种评估阳离子交换吸附活化能的方法[J]. 物理化学学报, 2017, 33(10): 1998-2003.
[15] 曾向东, 赵晓昱, 韦会鸽, 王彦飞, 唐娜, 沙作良. 聚苯胺-还原氧化石墨烯复合材料的比电容及超级电容性能[J]. 物理化学学报, 2017, 33(10): 2035-2041.