物理化学学报 >> 2013, Vol. 29 >> Issue (06): 1247-1252.doi: 10.3866/PKU.WHXB201303211

电化学和新能源 上一篇    下一篇

Li4Ti5O12/CMK-3复合材料的制备及其作为锂离子电池负极材料的性能

武洪彬1, 张莹1, 袁聪俐1, 韦小培1, 殷金玲1, 王贵领1, 曹殿学1, 张益明2, 杨宝峰2, 佘佩亮2   

  1. 1 超轻材料与表面技术教育部重点实验室, 哈尔滨工程大学材料科学与化学工程学院, 哈尔滨 150001;
    2 双登集团南京科技发展研究院, 南京 211100
  • 收稿日期:2013-01-08 修回日期:2013-03-20 发布日期:2013-05-17
  • 通讯作者: 曹殿学 E-mail:caodianxue@hrbeu.edu.cn
  • 基金资助:

    哈尔滨优秀学术带头人科技创新基金(2012RFXXG103); 中央高校基础研究基金(HEUCFT1205)及江苏省科技支撑计划(BE2012152)资助

Synthesis and Electrochemical Performance of Li4Ti5O12/CMK-3 Nanocomposite Negative Electrode Materials for Lithium-Ion Batteries

WU Hong-Bin1, ZHANG Ying1, YUAN Cong-Li1, WEI Xiao-Pei1, YIN Jin-Ling1, WANG Gui-Ling1, CAO Dian-Xue1, ZHANG Yi-Ming2, YANG Bao-Feng2, SHE Pei-liang2   

  1. 1 Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China;
    2 Shuangdeng Institute of Science and Techonology, Nanjing, 211000, P. R. China
  • Received:2013-01-08 Revised:2013-03-20 Published:2013-05-17
  • Supported by:

    The project was supported by Harbin Science and Technology Innovation Fund for Excellent Academic Leaders, China (2012RFXXG103), Fundamental Research Funds for the Central Universities, China (HEUCFT1205), and Science and Technology Support Program of Jiangsu Province, China (BE2012152).

摘要:

将LiNO3和Ti(OC4H9)4填填充在有序介孔碳CMK-3 孔道中, 然后烧结合成了Li4Ti5O12/CMK-3复合材料. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对其结构和微观形貌进行了表征. 利用差热-热重分析(TG-DTA)测试复合材料中Li4Ti5O12的含量. 利用充放电测试、循环伏安和电化学阻抗技术考察了复合材料作为锂离子电池负极材料的性能. 发现Li4Ti5O12分布在CMK-3孔道中及其周围, 复合材料的高倍率充放电性能显著优于商品Li4Ti5O12, 复合材料中Li4Ti5O12的比容量明显高于除去CMK-3的样品(在1C倍率时比容量为117.8 mAh·g-1), 其0.5C、1C和5C倍率的放电比容量分别为160、143 和131 mAh·g-1, 库仑效率接近100%, 5C倍率时循环100次的容量损失率只有0.62%. 本研究结果表明CMK-3明显提高了Li4Ti5O12的高倍率充放电性能, 可能是CMK-3特殊的孔道结构和良好的导电性减小了Li4Ti5O12的粒径并提高了其电导率.

关键词: 有序介孔碳, Li4Ti5O12, 复合材料, 锂离子电池, 负极材料

Abstract:

The composite of ordered mesoporous carbon (CMK-3) and Li4Ti5O12 (Li4Ti5O12/CMK-3) was prepared by the wet impregnation of CMK-3 with LiNO3 and Ti(OC4H9)4 solution followed by calcination. Its morphology and structure were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The content of Li4Ti5O12 in the mesoporous nanocomposite was determined by thermogravimetric analysis. Its electrochemical performance as the negative electrode material of lithium-ion batteries was investigated by galvanostatic charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results show that Li4Ti5O12 is formed inside the mesopore channels of CMK-3 and some particles are located on the surface of CMK-3. The composite shows significantly greater high-rate performance than commercial Li4Ti5O12. The specific capacity of Li4Ti5O12 in the composite is higher than Li4Ti5O12 without CMK-3 (117.8 mAh·g-1 at 1C rate), and its stabilized specific capacity reached 160, 143, and 131 mAh·g-1 at 0.5C, 1C, and 5C charge-discharge rates, respectively, with a columbic efficiency of nearly 100%. The capacity loss after 100 cycles at 5C rate was less than 0.62%. This result clearly indicates that CMK-3 improves the high rate performance of Li4Ti5O12, likely by reducing the particle size of Li4Ti5O12 and increasing its electronic conductivity owing to the unique structure and good electronic conduction nature of CMK-3.

Key words: Ordered mesoporous carbon, Lithium titanate oxide, Composite, Lithium-ion battery, Negative electrode material

MSC2000: 

  • O646