Please wait a minute...
物理化学学报  2013, Vol. 29 Issue (06): 1281-1288    DOI: 10.3866/PKU.WHXB201304101
催化和表面科学     
甲醇芳构化中催化剂酸性对脱烷基、烷基化和异构化反应的影响
张金贵1, 骞伟中1, 汤效平1,2, 沈葵1, 王彤1,2, 黄晓凡2, 魏飞1
1. 北京市绿色反应工程与工艺重点实验室, 清华大学化工系, 北京, 100084;
2. 华电煤业集团有限公司煤化工事业部, 北京, 100031
Influence of Catalyst Acidity on Dealkylation, Isomerization and Alkylation in MTA Process
ZHANG Jin-Gui1, QIAN Wei-Zhong1, TANG Xiao-Ping1,2, SHEN Kui1, WANG Tong1,2, HUANG Xiao-Fan2, WEI Fei1
1 Beijing Key Laboratory of Green Reaction Engineering & Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China;
2 Huadian Coal Industry Group Co. Ltd., Beijing, 100031, P. R. China
 全文: PDF(929 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

在Zn/P/ZSM-5催化剂上研究了甲醇、二甲苯、甲苯和甲醇等不同进料下芳烃产品分布随反应积碳的变化, 发现催化剂积碳对芳构化反应、脱烷基反应和烷基化反应的影响不同. 在不同硅铝摩尔比(Si/Al 比)和Zn负载量的Zn/P/ZSM-5 催化剂上进行甲醇转化, 考察催化剂酸性位点强度、密度和类型与芳烃收率和产品分布之间的关系, 发现当强酸位点酸密度下降时, 脱烷基反应最先被抑制, 其次是芳构化反应和异构化反应, 而烷基化反应却不受影响. 在Si/Al 比为14, 3% (w) Zn 负载量的Zn/P/ZSM-5 催化剂上可得到75%左右的芳烃收率, 二甲苯收率在35%左右, 具有重要的工业应用前景.

关键词: 甲醇ZSM-5分子筛芳构化脱烷基烷基化异构化    
Abstract:

Relationship between aromatics distribution, in the process of methanol to aromatics (MTA), and the conversion of methanol and the catalyst acidity was investigated over a series of Zn/P/ZSM-5 catalysts with different Si/Al molar ratios and zinc loading. To understand the contribution of aromatization, isomerization, dealkylation and alkylation reactivity of the catalyst to the aromatics distribution, coke deposition degree of Zn/P/ZSM-5 catalyst was tailored as using different feedstocks including methanol, xylene or the mixture of methanol and toluene. With the coke deposition, the amount of different types of acidic sites of catalyst varied significantly, characterized by NH3-temperature programmed desorption (NH3-TPD) and pyridine-infrared methods. Aromatization, dealkylation, alkylation, and isomerization showed sensitivity to a reduction in the density of strongly acidic sites. Dealkylation reaction was preferentially inhibited just by slightly decreasing the density of strong acid sites. However, aromatization and isomerization reaction were inhibited only when the density of strong acid sites was significantly decreased. In all cases, alkylation was found to be uninfluenced by acidic site density. A Zn/P/ZSM-5 catalyst with Si/Al molar ratio of 14 and 3% (w) Zn loading exhibited aromatics yields of 75% and xylene yields of about 35%, indicating potential for industrial application.

Key words: Methanol    ZSM-5 zeolite    Aromatization    Dealkylation    Alkylation    Isomerization
收稿日期: 2013-01-16 出版日期: 2013-04-10
中图分类号:  O643  
基金资助:

国家高技术研究发展计划(863)(2012AA051003)资助项目

通讯作者: 骞伟中     E-mail: qianwz@mail.tsinghua.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张金贵
骞伟中
汤效平
沈葵
王彤
黄晓凡
魏飞

引用本文:

张金贵, 骞伟中, 汤效平, 沈葵, 王彤, 黄晓凡, 魏飞. 甲醇芳构化中催化剂酸性对脱烷基、烷基化和异构化反应的影响[J]. 物理化学学报, 2013, 29(06): 1281-1288.

ZHANG Jin-Gui, QIAN Wei-Zhong, TANG Xiao-Ping, SHEN Kui, WANG Tong, HUANG Xiao-Fan, WEI Fei. Influence of Catalyst Acidity on Dealkylation, Isomerization and Alkylation in MTA Process. Acta Phys. -Chim. Sin., 2013, 29(06): 1281-1288.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201304101        http://www.whxb.pku.edu.cn/CN/Y2013/V29/I06/1281

(1) Olsbye, U.; Svelle, S.; Bjorgen, M.; Beato, P.; Janssens, T. V.W.; Joensen, F.; Bordiga, S.; Lillerud, K. P. Angew. Chem. Int. Edit. 2012, 51, 2. doi: 10.1002/anie.201107584
(2) Keil, F. J. Microporous Mesoporous Mat. 1999, 29, 49. doi: 10.1016/S1387-1811(98)00320-5
(3) Stocker, M. Microporous Mesoporous Mat. 1999, 29, 3. doi: 10.1016/S1387-1811(98)00319-9
(4) Zaidi, H. A.; Pant, K. K. Catal. Today 2004, 96, 155. doi: 10.1016/j.cattod.2004.06.123
(5) Freeman, D.;Wells, R. P. K.; Hutchings, G. J. J. Catal. 2002,205, 358. doi: 10.1006/jcat.2001.3446
(6) Freeman, D.;Wells, R. P. K.; Hutchings, G. J. Chem. Commun.2001, 1754.
(7) Ni, Y. M.; Peng,W. Y.; Sun, A. M.; Mao,W. L.; Hu, J. L.; Li, T.;Li, G. X. J. Ind. Eng. Chem. 2010, 16, 503. doi: 10.1016/j.jiec.2010.03.011
(8) Lopez-Sanchez, J. A.; Conte, M.; Landon, P.; Zhou,W.; Bartley,J. K.; Taylor, S. H.; Carley, A. F.; Kiely, C. J.; Khalid, K.;Hutchings, G. J. Catal. Lett. 2012, 142, 1049. doi: 10.1007/s10562-012-0869-2
(9) Tian, T.; Qian,W. Z.; Sun, Y. J.; Cui, Y.; Lu, Y. Y.;Wei, F.Modern Chemical Industry 2009, 29, 55. [田涛, 骞伟中, 孙玉建, 崔宇, 卢俨俨, 魏飞. 现代化工, 2009, 29, 55.]
(10) Tian, T.; Qian,W. Z.; Tang, X. P.; Yun, S.;Wei, F. Acta Phys. -Chim. Sin. 2010, 26, 3305. [田涛, 骞伟中, 汤效平,恽松, 魏飞. 物理化学学报, 2010, 26, 3305.] doi: 10.3866/PKU.WHXB20101228
(11) Wang, J. Y.; Li,W. H.; Hu, J. X. Journal of Fuel Chemistry and Technology 2009, 37, 607. [王金英, 李文怀, 胡津仙. 燃料化学学报, 2009, 37, 607.]
(12) Kecskemeti, A.; Barthos, R.; Solymosi, F. J. Catal. 2008, 258,111. doi: 10.1016/j.jcat.2008.06.003
(13) Choudhary, V. R.; Panjala, D.; Banerjee, S. Appl. Catal. A 2002,231, 243. doi: 10.1016/S0926-860X(02)00061-3
(14) Inoue, Y.; Nakashiro, K.; Ono, Y. Microporous Mat. 1995, 4,379. doi: 10.1016/0927-6513(95)00020-A
(15) Bjørgen, M.; Svelle, S.; Joensen, F.; Nerlov, J.; Kolboe, S.;Bonino, F.; Palumbo, L.; Bordiga, S.; Olsbye, U. J. Catal. 2007,249, 195. doi: 10.1016/j.jcat.2007.04.006
(16) Adebajo, M. O.; Long, M. A. Catal. Commun. 2003, 4, 71. doi: 10.1016/S1566-7367(02)00259-5
(17) Lukyanov, D. B.; Gnep, N. S.; Guisnet, M. R. Ind. Eng. Chem. Res. 1995, 34, 516. doi: 10.1021/ie00041a012
(18) Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meler,W. M.J. Phys. Chem. 1981, 85, 2238. doi: 10.1021/j150615a020
(19) Joshi, Y. V.; Thomson, K. T. J. Phys. Chem. C 2008, 112, 12825.doi: 10.1021/jp712071k
(20) Olson, D. H.; Haag,W. O. ACS Symp. Ser. 1984, 248, 275. doi: 10.1021/symposium
(21) Mirth, G.; Cejka, J.; Lercher, J. A. J. Catal. 1993, 139, 24. doi: 10.1006/jcat.1993.1003
(22) Guisnet, M.; Gnep, N. S.; Morin, S. Microporous Mesoporous Mat. 2000, 35 -36, 47.
(23) Ivanova, I. I.; Corma, A. J. Phys. Chem. B 1997, 101, 547. doi: 10.1021/jp961468k
(24) Tsai, T.; Liu, S.;Wang, I. Appl. Catal. A 1999, 181, 355. doi: 10.1016/S0926-860X(98)00396-2
(25) Serra, J. M.; Guillon, E.; Corma, A. J. Catal. 2004, 227, 459.doi: 10.1016/j.jcat.2004.08.006
(26) Zheng, S. R.; Heydenrych, H. R.; Jentys, A.; Lercher, J. A.J. Phys. Chem. B 2002, 106, 9552. doi: 10.1021/jp014091d
(27) Bibby, D. M.; Howe, R. F.; Mclellan, G. D. Appl. Catal. A 1992,93, 1. doi: 10.1016/0926-860X(92)80291-J
(28) Benito, P. L.; Gayubo, A. G.; Aguayo, A. T.; Olazar, M.; Bilbao,J. Ind. Eng. Chem. Res. 1996, 35, 3991. doi: 10.1021/ie950462z
(29) Biscardi, J. A.; Meitzner, G. D.; Iglesia, E. J. Catal. 1998, 179,192. doi: 10.1006/jcat.1998.2177
(30) El-Malki, E. M.; Van Santen, R. A.; Sachtler,W. M. H. J. Phys. Chem. B 1999, 103, 4611. doi: 10.1021/jp990116l
(31) Bhan, A.; Delgass,W. N. Catal. Rev. 2008, 50, 19. doi: 10.1080/01614940701804745

[1] 易颜辉,王旬旬,王丽,闫金辉,张家良,郭洪臣. 等离子体引发CH3OH/NH3偶联反应合成腈类化合物[J]. 物理化学学报, 2018, 34(3): 247-255.
[2] 柳平英,刘春艳,刘倩,马晶. 含偶氮苯主-客体复合物的光致异构化反应对结合能与几何构象的影响[J]. 物理化学学报, 2018, 34(10): 1171-1178.
[3] 钱慧慧,韩潇,肇研,苏玉芹. 柔性Pd@PANI/rGO纸阳极在甲醇燃料电池中的应用[J]. 物理化学学报, 2017, 33(9): 1822-1827.
[4] 杨翼,罗来明,陈迪,刘洪鸣,张荣华,代忠旭,周新文. 石墨烯负载PtPd纳米催化剂的合成及其电催化氧化甲醇性能[J]. 物理化学学报, 2017, 33(8): 1628-1634.
[5] 裘建平,童怡雯,赵德明,何志桥,陈建孟,宋爽. TiO2纳米管电极上电化学还原CO2生成CH3OH[J]. 物理化学学报, 2017, 33(7): 1411-1420.
[6] 位春蕾,高洁,王凯,董梅,樊卫斌,秦张峰,王建国. 氢预处理对Zn/HZSM-5分子筛催化乙烯芳构化反应性能的影响[J]. 物理化学学报, 2017, 33(7): 1483-1491.
[7] 刘丹阳,王宛洛,徐首红,刘洪来. 二维界面上偶氮苯糖脂的光响应行为[J]. 物理化学学报, 2017, 33(4): 836-844.
[8] 李玲玲,陈韧,戴戬,孙野,张作良,李晓亮,聂小娃,宋春山,郭新闻. 苯和甲醇在H-ZSM-5催化剂上甲基化的反应机理[J]. 物理化学学报, 2017, 33(4): 769-779.
[9] 王跃桦,王俊杰,梁金花,王俊格,成静,丁中协,刘振,任晓乾. SiO2改性MCM-22分子筛上联苯与环己醇的择形烷基化反应[J]. 物理化学学报, 2017, 33(11): 2277-2283.
[10] 胡思,张卿,巩雁军,张瑛,吴志杰,窦涛. HZSM-5分子筛在甲醇制丙烯反应中的失活与再生[J]. 物理化学学报, 2016, 32(7): 1785-1794.
[11] 袁苹,王浩,薛彦峰,李艳春,王凯,董梅,樊卫斌,秦张峰,王建国. 不同粒径ZSM-5分子筛在苯与甲醇烷基化反应中催化性能及反应条件优化[J]. 物理化学学报, 2016, 32(7): 1775-1784.
[12] 田春霞,杨军帅,李丽,张小华,陈金华. 新型耐甲醇氧还原电催化剂——氮掺杂中空碳微球@铂纳米粒子复合材料[J]. 物理化学学报, 2016, 32(6): 1473-1481.
[13] 赵俊凤,孙小丽,黄旭日,李吉来. 铂钌团簇及电荷对甲醇活性的理论研究[J]. 物理化学学报, 2016, 32(5): 1175-1182.
[14] 刘建红,吕存琴,晋春,王贵昌. 碱性介质中CO对甲醇在PtAu(111)和Pt(111)表面氧化生成甲酸的影响的第一性原理研究[J]. 物理化学学报, 2016, 32(4): 950-960.
[15] 王昕,张玉瑾,王传奎. 基于咔唑的双光子荧光次氯酸根探针光学性质及响应机理[J]. 物理化学学报, 2016, 32(12): 2913-2920.