Please wait a minute...
物理化学学报  2013, Vol. 29 Issue (07): 1550-1557    DOI: 10.3866/PKU.WHXB201304283
催化和表面科学     
NH3-SCR反应过程中NH3和NOx在Cu/SAPO-34分子筛催化剂上的吸附特性和作用
石琳1, 于铁1, 王欣全1, 王军1, 沈美庆1,2
1 天津大学化工学院, 绿色合成与转化教育部重点实验室, 天津 300072;
2 天津大学内燃机国家重点实验室, 天津 300072
Properties and Roles of Adsorbed NH3 and NOx over Cu/SAPO-34 Zeolite Catalyst in NH3-SCR Process
SHI Lin1, YU Tie1, WANG Xin-Quan1, WANG Jun1, SHEN Mei-Qing1,2
1 Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China;
2 State Key Laboratory of Engines, Tianjin University, Tianjin 300072, P. R. China
 全文: PDF(941 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

通过离子交换法制得Cu/SAPO-34菱沸石分子筛催化剂, 同时研究了NH3和NOx (NO和NO2)在该催化剂上的吸附位、吸附强度、吸附量和吸附速率, 得到了不同反应气氛在Cu/SAPO-34 上的吸附性能及其在NH3选择性催化还原(NH3-SCR)反应中的作用. 研究采用瞬态实验、程序升温脱附(TPD)和漫反射傅里叶变换红外光谱(DRIFTS)等方法进行表征实验. 瞬态实验结果表明NH3是吸附性气体. 程序升温脱附实验和红外漫反射实验结果表明NH3可以吸附在布朗斯特和路易斯酸性位上形成不同的NH3物种, 它们显示不同的SCR活性. NH3在Cu2+上的吸附速率最快, 且键强最强. NOx可以氧化并以硝酸盐/亚硝酸盐的形式吸附在Cu物种上. 最后, 本文讨论了NH3选择性催化还原反应过程中在Cu物种上的中间物种并推测反应机理.

关键词: NH3选择性催化还原NOx (NO和NO2)Cu/SAPO-34漫反射傅里叶变换红外光谱吸附物种    
Abstract:

To investigate the adsorption properties and roles of different feed gases in the selective catalytic reduction by ammonia (NH3-SCR), the adsorption sites, strength, and amount as well as reaction rates of NH3 and NOx (a mixture of NO and NO2) on exchanged Cu/SAPO-34 (chabazite zeolite) catalyst were studied. Transient response, temperature programmed desorption (TPD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments were performed to characterize the catalyst. Transient response experiments showed that NH3 was adsorbed by the catalyst. TPD and DRIFTS indicated that NH3 can be adsorbed at both Br?nsted and Lewis acid sites to form various NH3 adsorption species that show different SCR activities. The adsorption rate of NH3 by Cu2+ cations was the fastest and the adsorption bond strength of NH3-Cu2+ was the strongest between NH3 and the Cu/SAPO-34 catalyst. NOx can be oxidized and stored as nitrates and nitrites on the Cu catalyst. The intermediate species formed at Cu active sites during the NH3-SCR reaction are discussed, allowing SCR reaction mechanisms to be inferred.

Key words: Ammonia selective catalytic reduction    NOx (NO and NO2)    Cu/SAPO-34    Diffuse reflectance infrared Fourier transform spectrum    Adsorption species
收稿日期: 2013-02-15 出版日期: 2013-04-28
中图分类号:  O643  
基金资助:

国家高技术研究发展计划项目(863) (2011AA03A405)资助

通讯作者: 沈美庆     E-mail: mqshen@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
石琳
于铁
王欣全
王军
沈美庆

引用本文:

石琳, 于铁, 王欣全, 王军, 沈美庆. NH3-SCR反应过程中NH3和NOx在Cu/SAPO-34分子筛催化剂上的吸附特性和作用[J]. 物理化学学报, 2013, 29(07): 1550-1557.

SHI Lin, YU Tie, WANG Xin-Quan, WANG Jun, SHEN Mei-Qing. Properties and Roles of Adsorbed NH3 and NOx over Cu/SAPO-34 Zeolite Catalyst in NH3-SCR Process. Acta Phys. Chim. Sin., 2013, 29(07): 1550-1557.

链接本文:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/10.3866/PKU.WHXB201304283        http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/Y2013/V29/I07/1550

(1) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Appl. Catal. B: Environ. 1998, 18, 1. doi: 10.1016/S0926-3373(98)00040-X
(2) Qi, G. S.; Yang, R. T.; Chang, R. Appl. Catal. B: Environ. 2004,51, 93. doi: 10.1016/j.apcatb.2004.01.023
(3) Si, Z. C.;Weng, D.;Wu, X. D.; Li, J.; Li, G. J. Catal. 2010, 271,43. doi: 10.1016/j.jcat.2010.01.025
(4) Lobree, L. J.; Hwang, I. C.; Reimer, J. A.; Bell, A. T. J. Catal.1999, 186, 242. doi: 10.1006/jcat.1999.2548
(5) Liu, C. C.; Teng, H. Appl. Catal. B: Environ. 2005, 58, 69.doi: 10.1016/j.apcatb.2004.12.002
(6) Sjövall, H.; Blint, R. J.; Olsson, L. Appl. Catal. B: Environ.2009, 92, 138. doi: 10.1016/j.apcatb.2009.07.020
(7) Praliaud, H.; Mikhailenko, S.; Chajar, Z.; Primet, M. Appl. Catal. B: Environ. 1998, 16, 359. doi: 10.1016/S0926-3373(97)00093-3
(8) Centi, G.; Perathoner, S. Appl. Catal. A: Gen. 1995, 132, 179.doi: 10.1016/0926-860X(95)00154-9
(9) Seyedeyn-Azad, F.; Zhang, D. K. Catal. Today 2001, 68, 161.doi: 10.1016/S0920-5861(01)00308-X
(10) Kagawa, S.; Yokoo, S.; Iwamoto, M. J. Chem. Soc. Chem. Commun. 1978, 23, 1058.
(11) Li, Y.; Hall,W. K. J. Phys. Chem. 1990, 94, 6145. doi: 10.1021/j100379a001
(12) Dltri, J. L.; Sachtler,W. M. H. Catal. Lett. 1992, 15, 289.doi: 10.1007/BF00765273
(13) Kwak, J. H.; Tonkyn, R. G.; Kim, D. H.; Szanyi, J.; Peden, C.H. F. J. Catal. 2010, 275, 187. doi: 10.1016/j.jcat.2010.07.031
(14) Fickel, D.W.; D'Addio, E.; Lauterbach, J. A.; Lobo, R. F. Appl. Catal. B: Environ. 2011, 102, 441. doi: 10.1016/j.apcatb.2010.12.022
(15) Ishihara, T.; Kagawa, M.; Hadama, F.; Takita, Y. J. Catal. 1997,169, 93. doi: 10.1006/jcat.1997.1681
(16) Pastore, H. O.; Coluccia, S.; Marchese, L. A. Rev. Mater. Res.2005, 35, 351. doi: 10.1146/annurev.matsci.35.103103.120732
(17) Deka, U.; Lezcano-Gonzalez, I.;Warrender, S. J.; Picone, A. L.;Wright, P. A.;Weckhuysen, B. M.; Beale, A. M. Microporous Mesoporous Mat. 2013, 166, 144. doi: 10.1016/j.micromeso.2012.04.056
(18) Xue, J. J.;Wang, X. Q.; Qi, G. S.;Wang, J.; Shen, M. Q.; Li,W.J. Catal. 2013, 297, 56. doi: 10.1016/j.jcat.2012.09.020
(19) Wang, L.; Li,W.; Qi, G. S.;Weng, D. J. Catal. 2012, 289, 21.doi: 10.1016/j.jcat.2012.01.012
(20) Wang, J.; Yu, T.;Wang, X. Q.; Qi, G. S.; Xue, J. J.; Shen, M. Q.;Li,W. Appl. Catal. B: Environ. 2012, 127, 137. doi: 10.1016/j.apcatb.2012.08.016
(21) Martins, G. V. A.; Berlier, G.; Bisio, C.; Coluccia, S.; Pastore,H. O.; Marchese, L. J. Phys. Chem. C 2008, 112, 7193.doi: 10.1021/jp710613q
(22) Onida, B.; Gabelica, Z.; Lourenco, J.; Garrone, E. J. Phys. Chem. 1996, 100, 11072. doi: 10.1021/jp9600874
(23) Sun, Q.; Gao, Z. X.;Wen, B.; Sachtler,W. M. H. Catal. Lett.2002, 78, 1. doi: 10.1023/A:1014981206924
(24) Hadjiivanov, K.; Klissurski, D.; Ramis G.; Busca, G. Appl. Catal. B: Environ. 1996, 7, 251. doi: 10.1016/0926-3373(95)00034-8
(25) Centi, G.; Perathoner, S.; Biglino D.; Giamello, E. J. Catal.1995, 152, 75. doi: 10.1006/jcat.1995.1062
(26) Valyon, J.; Onyestyak, G.; Rees, L. V. C. J. Phys. Chem. B1998, 102, 8994. doi: 10.1021/jp981872e
(27) Qi, G. S.; Gatt, J. E.; Yang, R. T. J. Catal. 2004, 226, 120.doi: 10.1016/j.jcat.2004.05.023
(28) Jentys, A.;Warecka, G.; Lercher, J. A. J. Mol. Catal. A: Chem.1989, 51, 309. doi: 10.1016/0304-5102(89)80010-0
(29) Centi, G.; Perathoner, S. Catal. Today 1996, 29, 117.doi: 10.1016/0920-5861(95)00289-8
(30) Hadjiivanov, K.; Klissurski, D.; Ramis, G.; Busca, G. Appl. Catal. B: Environ. 1996, 7, 251. doi: 10.1016/0926-3373(95)00034-8
(31) Adelman, B. J.; Beutel, T.; Lei, G. D.; Sachtler,W. M. H.J. Catal. 1996, 158, 327. doi: 10.1006/jcat.1996.0031
(32) Poignant, F.; Freysz, J. L.; Daturi, M.; Saussey, J. Catal. Today2001, 70, 197. doi: 10.1016/S0920-5861(01)00418-7
(33) Sjövall, H.; Fridell, E.; Blint, R. J.; Olsson, L. Top Catal. 2007,42, 113. doi: 10.1007/s11244-007-0162-6
(34) Qi, G. S.; Yang, R. T. J. Phys. Chem. B 2004, 108, 15738.doi: 10.1021/jp048431h
(35) Trovarelli, A. Catal. Rev.-Sci. Eng. 1996, 38, 439. doi: 10.1080/01614949608006464
(36) Centi, G.; Perathoner, S. Catal. Today 1996, 29, 117.doi: 10.1016/0920-5861(95)00289-8
(37) Konduru, M. V.; Chuang, S. S. C. J. Catal. 2000, 196, 271.doi: 10.1006/jcat.2000.3046
(38) Sjövall, H.; Blint, R. J.; Olsson, L. J. Phys. Chem. C 2009, 113,1393. doi: 10.1021/jp802449s
(39) Lin, T.; Li,W.; Gong, M. C.; Yu, Y.; Du, B.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2007, 23, 1851. [林涛, 李伟, 龚茂初,喻瑶, 杜波, 陈耀强. 物理化学学报, 2007, 23, 1851.]doi: 10.1016/S1872-1508(07)60089-8
(40) Korhonen, S. T.; Fickel, D.W.; Lobo, R. F.;Weckhuysenb, B.M.; Beale, A. M. Chem. Commun. 2010, 47, 800
(41) Brandenberger, S.; Kröcher, O.; Tissler A.; Althoff, R. Catal. Res. 2008, 50, 492. doi: 10.1080/01614940802480122

[1] 姚小江, 贡营涛, 李红丽, 杨复沫. 铈基催化剂用于NH3选择性催化还原NOx的研究进展[J]. 物理化学学报, 2015, 31(5): 817-828.
[2] 郝腾, 王军, 于铁, 王建强, 沈美庆. NO2对Cu/SAPO-34分子筛催化剂上NH3选择性催化还原NO性能的影响[J]. 物理化学学报, 2014, 30(8): 1567-1574.
[3] 杨兴业, 李斌, 孙亮, 黄志伟, 成晓敏, 张韬伟, 唐幸福. α-Fe2O3表面结构对NH3选择性催化还原NO活性的影响[J]. 物理化学学报, 2012, 28(01): 184-188.
[4] 陈建刚;相宏伟;董庆年;王秀芝;孙予罕. 钴基费-托合成催化剂上CO、H2的吸附行为[J]. 物理化学学报, 2001, 17(02): 161-164.