Please wait a minute...
物理化学学报  2013, Vol. 29 Issue (08): 1681-1690    DOI: 10.3866/PKU.WHXB201305223
电化学和新能源     
水热合成部分还原氧化石墨烯-K2Mn4O8超级电容器纳米复合材料
李乐1, 贺蕴秋1,2, 储晓菲1, 李一鸣1, 孙芳芳1, 黄河洲1
1 同济大学材料科学与工程学院, 上海 200092;
2 同济大学先进土木工程材料教育部重点实验室, 上海 200092
Hydrothermal Synthesis of Partially Reduced Graphene Oxide-K2Mn4O8 Nanocomposites as Supercapacitors
LI Le1, HE Yun-Qiu1,2, CHU Xiao-Fei1, LI Yi-Ming1, SUN Fang-Fang1, HUANG He-Zhou1
1 School of Material Science and Engineering, Tongji University, Shanghai 200092, P. R. China;
2 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 200092, P. R. China
 全文: PDF(1104 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

通过控制水热反应温度以及氧化石墨烯(GO)与高锰酸钾的填料比, 合成了两组部分还原的GO-K2Mn4O8纳米复合材料. X射线衍射(XRD)分析说明水热过程中合成了α-MnO2和一种新的晶相K2Mn4O8.通过X射线光电子能谱(XPS)分析了水热反应前后氧化石墨的含氧官能团的变化. 扫描电子显微镜(SEM)显示样品由片状还原的氧化石墨烯构成, 其表面附有许多小的纳米颗粒, 这种结构有利于储能时电子的传递. 通过这两组复合材料的结构分析, 更好地理解了材料的电化学性能的变化. 利用循环伏安法和恒流充放电测试比较了材料的电容性能. 用1 mol·L-1的硫酸钠做电解液, 电位范围是0-1 V, 在1 A·g-1的电流密度下, 测得的样品最佳比电容达到251 F·g-1, 能量密度为32 Wh·kg-1, 功率密度为18.2 kW·kg-1. 并且在5 A·g-1的电流密度下循环1000次后样品的比电容仍维持在初始比电容的88%.

关键词: 超级电容器还原的氧化石墨烯钾锰氧化物氧化锰复合材料电容性能    
Abstract:

Nanocomposites of partially reduced graphene oxide (GO)-K2Mn4O8 were synthesized via a hydrothermal process at different temperatures and molar feed ratios of GO to KMnO4. X-ray diffraction (XRD) analysis confirmed that both α-MnO2 and a novel crystal phase of K2Mn4O8 were obtained under the investigated hydrothermal conditions. X-ray photoelectron spectroscopy (XPS) revealed diverse changes of the oxygen-containing functional groups on the surface of GO depending on temperature and molar feed ratio. The microstructure of the composites was studied to help understand their electrochemical properties. A flaky structure of reduced graphene oxide (rGO) covered by nanoparticles was observed by scanning electron microscope (SEM), which was considered to be favorable for charge transfer. The capacitive properties of the composites were compared using cyclic voltammograms and galvanostatic charge-discharge measurements. The specific capacitance of the optimal sample was calculated to be 251 F·g-1 with an energy density of 32 Wh·kg-1 and a power density of 18.2 kW·kg-1 in 1 mol·L-1 Na2SO4 electrolyte at a current density of 1 A·g-1 between 0 and 1 V. Moreover, the capacitance retention ratio of this sample remained at 88% after 1000 cycles at a high current density of 5 A·g-1.

Key words: Supercapacitor    Reduced graphene oxide    Potassium manganese oxide    Manganese oxide    Composite    Capacitive behavior
收稿日期: 2013-02-27 出版日期: 2013-05-22
中图分类号:  O646  
基金资助:

国家自然科学基金(51175162)资助项目

通讯作者: 贺蕴秋     E-mail: heyunqiu@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李乐
贺蕴秋
储晓菲
李一鸣
孙芳芳
黄河洲

引用本文:

李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河洲. 水热合成部分还原氧化石墨烯-K2Mn4O8超级电容器纳米复合材料[J]. 物理化学学报, 2013, 29(08): 1681-1690.

LI Le, HE Yun-Qiu, CHU Xiao-Fei, LI Yi-Ming, SUN Fang-Fang, HUANG He-Zhou. Hydrothermal Synthesis of Partially Reduced Graphene Oxide-K2Mn4O8 Nanocomposites as Supercapacitors. Acta Phys. -Chim. Sin., 2013, 29(08): 1681-1690.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201305223        http://www.whxb.pku.edu.cn/CN/Y2013/V29/I08/1681

(1) Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41 (2),797. doi: 10.1039/c1cs15060j
(2) Wang, X.; Li, G.; Chen, Z.; Augustyn, V.; Ma, X.;Wang, G.;Dunn, B.; Lu, Y. Adv. Energy Mater. 2011, 1 (6), 1089. doi: 10.1002/aenm.201100332
(3) Chen, Z.;Wen, J.; Yan, C.; Rice, L.; Sohn, H.; Shen, M.; Cai,M.; Dunn, B.; Lu, Y. Adv. Energy Mater. 2011, 1 (4), 551. doi: 10.1002/aenm.201100114
(4) Guo, P. Z.; Ji, Q. Q.; Zhang, L. L.; Zhao, S. Y.; Zhao, X. S. ActaPhys. -Chim. Sin. 2011, 27 (12), 2836. [郭培志, 季倩倩, 张丽莉, 赵善玉, 赵修松. 物理化学学报, 2011, 27 (12), 2836.] doi: 10.3866/PKU.WHXB20112836
(5) Lin, Y. H.;Wei, T. Y.; Chien, H. C.; Lu, S. Y. Adv. Energy Mater.2011, 1 (5), 901. doi: 10.1002/aenm.201100256
(6) Yu, G.; Hu, L.; Vosgueritchian, M.;Wang, H.; Xie, X.;McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. Nano Lett. 2011, 11 (7), 2905. doi: 10.1021/nl2013828
(7) Sharma, P.; Bhatti, T. S. Energy Convers. Manag. 2010, 51 (12),2901. doi: 10.1016/j.enconman.2010.06.031
(8) Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38 (9), 2520.doi: 10.1039/b813846j
(9) Ghosh, A.; Lee, Y. H. ChemSusChem 2012, 5 (3), 480. doi: 10.1002/cssc.201100645
(10) Sop?i?, S.; Mandi?, Z.; Inzelt, G.; Rokovi?, M. K.; Meštrovi?,E. J. Power Sources 2011, 196 (10), 4849. doi: 10.1016/j.jpowsour.2011.01.070
(11) Bharali, P.; Kuratani, K.; Takeuchi, T.; Kiyobayashi, T.;Kuriyama, N. J. Power Sources 2011, 196 (18), 7878. doi: 10.1016/j.jpowsour.2011.03.097
(12) Zhang, Y.; Feng, H.;Wu, X.;Wang, L.; Zhang, A.; Xia, T.;Dong, H.; Li, X.; Zhang, L. Int. J. Hydrog. Energy 2009, 34 (11), 4889. doi: 10.1016/j.ijhydene.2009.04.005
(13) Hu, Y. Y.; Hu, Z. A.; Zhang, Y. J.; Lu, A. L.; Xu, H.; Zhang, Z.Y.; Yang, Y. Y.; Li, L.;Wu, H. Y. Acta Phys. -Chim. Sin. 2013,29 (2), 305. [胡英瑛, 胡中爱, 张亚军, 鲁爱莲, 徐欢, 张子瑜, 杨玉英, 李丽, 吴红英. 物理化学学报, 2013, 29 (2),305.] doi: 10.3866/PKU.WHXB201211201
(14) Lee, J.W.; Ahn, T.; Kim, J. H.; Ko, J. M.; Kim, J. D.Electrochim. Acta 2011, 56 (13), 4849. doi: 10.1016/j.electacta.2011.02.116
(15) Xu, J.; Gao, L.; Cao, J.;Wang,W.; Chen, Z. J. Solid StateElectrochem. 2011, 15 (9), 2005. doi: 10.1007/s1008-010-1222-6
(16) Fan, Z.; Chen, J.; Cui, K.; Sun, F.; Xu, Y.; Kuang, Y.Electrochim. Acta 2007, 52 (9), 2959. doi: 10.1016/j.electacta.2006.09.029
(17) Burke, A. Electrochim. Acta 2007, 53 (3), 1083. doi: 10.1016/j.electacta.2007.01.011
(18) Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Bélanger,D. Appl. Phys. A 2006, 82 (4), 599. doi: 10.1007/s00339-005-3401-3
(19) Li, Y.; Xie, H.;Wang, J.; Chen, L. Mater. Lett. 2011, 65 (2), 403.doi: 10.1016/j.matlet.2010.10.048
(20) Chen, Z.; Jiao, Z.; Pan, D.; Li, Z.;Wu, M.; Shek, C. H.;Wu, C.M.; Lai, J. K. Chem. Rev. 2012, 112 (7), 3833. doi: 10.1021/cr2004508
(21) Beaudrouet, E.; Le Gal La Salle, A.; Guyomard, D. Electrochim.Acta 2009, 54 (4), 1240. doi: 10.1016/j.electacta.2008.08.072
(22) Zhang, J.; Jiang, J.; Zhao, X. S. J. Phys. Chem. C 2011, 115 (14), 6448. doi: 10.1021/jp200724h
(23) Yu, G.; Hu, L.; Liu, N.;Wang, H.; Vosgueritchian, M.; Yang, Y.;Cui, Y.; Bao, Z. Nano Lett. 2011, 11 (10), 4438. doi: 10.1021/nl2026635
(24) Wang, Y. T.; Lu, A. H.; Zhang, H. L.; Li,W. C. J. Phys. Chem. C2011, 115 (13), 5413. doi: 10.1021/jp110938x
(25) Wang, H.; Peng, C.; Peng, F.; Yu, H.; Yang, J. Mater. Sci. Eng. B2011, 176 (14), 1073. doi: 10.1016/j.mseb.2011.05.043
(26) Zhu, G.; Li, H.; Deng, L.; Liu, Z. H. Materials Letters 2010, 64 (16), 1763. doi: 10.1016/j.matlet.2010.05.019
(27) Pang, X.; Ma, Z. Q.; Zuo, L. Acta Phys. -Chim. Sin. 2009, 25 (12), 2433. [庞旭, 马正青, 左列. 物理化学学报, 2009,25 (12), 2433.] doi: 10.3866/PKU.WHXB20091211
(28) Zhao, J. Z.; Tao, Z. L.; Liang, J.; Chen, J. Cryst. Growth Des.2008, 8 (8), 2799. doi: 10.1021/cg701044b
(29) Devaraj, S.; Munichandraiah, N. J. Phys. Chem. C 2008, 112 (11), 4406. doi: 10.1021/jp7108785
(30) Yu, J.; Zhao, T.; Zeng, B. Electrochem. Commun. 2008, 10 (9),1318. doi: 10.1016/j.elecom.2008.06.028
(31) Qiu, G.; Huang, H.; Dharmarathna, S.; Benbow, E.; Stafford, L.;Suib, S. L. Chem. Mater. 2011, 23 (17), 3892. doi: 10.1021/cm2011692
(32) Yang, Y. Y.; Xiao, L. F.; Zhao, Y. Q.;Wang, F. Y. Int. J.Electrochem. Sci. 2008, 3 (1), 67.
(33) Subramanian, V.; Zhu, H.W.; Vajtai, R.; Ajayan, P. M.;Wei, B.Q. J. Phys. Chem. B 2005, 109 (43), 20207. doi: 10.1021/jp0543330
(34) Xiao,W.;Wang, D. L.; Lou, X.W. J. Phys. Chem. C 2010, 114 (3), 1694. doi: 10.1021/jp909386d
(35) Xu, M.; Kong, L.; Zhou,W.; Li, H. J. Phys. Chem. C 2007, 111 (51), 19141. doi: 10.1021/jp076730b
(36) Wang, H.; Lu, Z.; Qian, D.; Li, Y.; Zhang,W. Nanotechnology2007, 18 (11), 115616. doi: 10.1088/0957-4484/18/11/115616
(37) Li, Z.;Wang, J.; Liu, S.; Liu, X.; Yang, S. J. Power Sources2011, 196 (19), 8160. doi: 10.1016/j.jpowsour.2011.05.036
(38) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C.Carbon 2011, 49 (9), 2917. doi: 10.1016/j.carbon.2011.02.068
(39) Yan, J.; Fan, Z.;Wei, T.; Qian,W.; Zhang, M.;Wei, F. Carbon2010, 48 (13), 3825. doi: 10.1016/j.carbon.2010.06.047
(40) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.;Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.;Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011,332 (6037), 1537. doi: 10.1126/science.1200770
(41) Miller, J. R.; Outlaw, R. A.; Holloway, B. C. Science 2010, 329 (5999), 1637. doi: 10.1126/science.1194372
(42) Le, L. T.; Ervin, M. H.; Qiu, H.; Fuchs, B. E.; Lee,W. Y.Electrochem. Commun. 2011, 13 (4), 355. doi: 10.1016/j.elecom.2011.01.023
(43) Huang, X.; Yin, Z.;Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.;Boey, F.; Zhang, H. Small 2011, 7 (14), 1876. doi: 10.1002/smll.201002009
(44) Luo, D. C.; Zhang, G. X.; Liu, J. F.; Sun, X. M. J. Phys. Chem.C 2011, 115 (23), 11327. doi: 10.1021/jp110001y
(45) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.;Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu,W.; Tour, J. M. ACSNano 2010, 4 (8), 4806. doi: 10.1021/nn1006368
(46) Tang, N.; Tian, X.; Yang, C.; Pi, Z. Materials Research Bulletin2009, 44 (11), 2062. doi: 10.1016/j.materresbull.2009.07.012
(47) Chen,W. F.; Yan, L. F.; Bangal, P. R. J. Phys. Chem. C 2010,114 (47), 19885. doi: 10.1021/jp107131v
(48) Nesbitt, H.W.; Banerjee, D. American Mineralogist 1998, 83 (3-4), 305.
(49) Gao, J.; Tong, X.; Li, X.; Miao, H.; Xu, J. J. Chem. Technol.Biotechnol. 2007, 82 (7), 620. doi: 10.1002/jctb.1717
(50) Xia, H.;Wang, Y.; Lin, J.; Lu, L. Nanoscale Res. Lett. 2012, 7 (1), 33. doi: 10.1186/1556-276X-7-33
(51) Di Fabio, A.; Mastragostino, A. G. M.; Soavi, F. J. Electrochem.Soc. 2001, 148, A845.
(52) Tang, N.; Tian, X.; Yang, C.; Pi, Z. Mater. Res. Bull. 2009, 44 (11), 2062. doi: 10.1016/j.materresbull.2009.07.012

[1] 神祥艳,何建江,王宁,黄长水. 石墨炔在电化学储能器件中的应用[J]. 物理化学学报, 2018, 34(9): 1029-1047.
[2] 陈克,孙振华,方若翩,李峰,成会明. 锂硫电池用石墨烯基材料的研究进展[J]. 物理化学学报, 2018, 34(4): 377-390.
[3] 陆腾,周永祥,郭洪霞. 聚合物接枝Janus纳米片形变的耗散粒子动力学研究[J]. 物理化学学报, 2018, 34(10): 1144-1150.
[4] 王海燕,石高全. 层状双金属氢氧化物/石墨烯复合材料及其在电化学能量存储与转换中的应用[J]. 物理化学学报, 2018, 34(1): 22-35.
[5] 杜惟实,吕耀康,蔡志威,张诚. 基于三维多孔石墨烯/含钛共轭聚合物复合多孔薄膜的柔性全固态超级电容器[J]. 物理化学学报, 2017, 33(9): 1828-1837.
[6] 程若霖,金锡雄,樊向前,王敏,田建建,张玲霞,施剑林. 氮掺杂还原氧化石墨烯与吡啶共聚g-C3N4复合光催化剂及其增强的产氢活性[J]. 物理化学学报, 2017, 33(7): 1436-1445.
[7] 王美淞,邹培培,黄艳丽,王媛媛,戴立益. 高活性、可循环的Pt-Cu@3D石墨烯复合催化剂的制备和催化性能[J]. 物理化学学报, 2017, 33(6): 1230-1235.
[8] LIAOChun-Rong,XIONGFeng,LIXian-Jun,WUYi-Qiang,LUOYong-Feng. 导电聚合物在纤维状能源器件中的应用进展[J]. 物理化学学报, 2017, 33(2): 329-343.
[9] 吴中,张新波. 高容量超级电容器电极材料的设计与制备[J]. 物理化学学报, 2017, 33(2): 305-313.
[10] 全泉,谢顺吉,王野,徐艺军. 石墨烯基复合材料应用于光电二氧化碳还原的基本原理,研究进展和发展前景[J]. 物理化学学报, 2017, 33(12): 2404-2423.
[11] 李道琰,张基琛,王志勇,金先波. 蜂巢状多孔明胶制备高性能超级电容器用活性炭[J]. 物理化学学报, 2017, 33(11): 2245-2252.
[12] 李万隆,李月姣,曹美玲,曲薇,屈雯洁,陈实,陈人杰,吴锋. 流变相法制备海藻酸基碳包覆Li3V2(PO4)3材料的电化学性能[J]. 物理化学学报, 2017, 33(11): 2261-2267.
[13] 余翠平,王岩,崔接武,刘家琴,吴玉程. TiO2纳米管阵列的多重改性及其在超级电容器中应用的最新进展[J]. 物理化学学报, 2017, 33(10): 1944-1959.
[14] 李雪芹,常琳,赵慎龙,郝昌龙,陆晨光,朱以华,唐智勇. 基于碳材料的超级电容器电极材料的研究[J]. 物理化学学报, 2017, 33(1): 130-148.
[15] 唐艳平,元莎,郭玉忠,黄瑞安,王剑华,杨斌,戴永年. 镁热还原法制备有序介孔Si/C锂离子电池负极材料及其电化学性能[J]. 物理化学学报, 2016, 32(9): 2280-2286.