Please wait a minute...
物理化学学报  2013, Vol. 29 Issue (10): 2239-2244    DOI: 10.3866/PKU.WHXB201308151
催化和表面科学     
Fe3O4修饰的Pt-Ru/C纳米催化剂的制备及其在无溶剂条件下邻氯硝基苯选择性加氢的催化性能
王亚南1,2, 杨玉霞1, 李永文1, 赖俊华2,3, 孙鲲鹏1
1 中国科学院兰州化学物理研究所绿色化学与催化中心, 兰州 730000;
2 中国科学院大学, 北京 100049;
3 中国科学院寒区旱区环境与工程研究所, 兰州 730000
Preparation of Fe3O4 Modified Pt-Ru/C Nanocatalysts and Their Catalytic Properties for the Selective Hydrogenation of ortho-Chloronitrobenzene under Solvent-Free Conditions
WANG Ya-Nan1,2, YANG Yu-Xia1, LI Yong-Wen1, LAI Jun-Hua2,3, SUN Kun-Peng1
1 Centre for Green Chemistry and Catalysis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China;
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China;
3 Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
 全文: PDF(19455 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

采用浸渍法制备了一系列Pt/Ru质量比不同的Fe3O4修饰的Pt-Ru/Fe3O4/C催化剂, 运用透射电镜(TEM)、能量弥散X射线谱(EDX)、X射线光电子能谱(XPS)、X射线粉末衍射(XRD)等手段对Pt-Ru/Fe3O4/C一系列催化剂进行了表征, 并考察了Pt/Ru质量比不同对催化剂Pt-Ru/Fe3O4/C在无溶剂条件下催化邻氯硝基苯(o-CNB)选择性加氢制备邻氯苯胺(o-CAN)催化性能的影响. 研究结果表明, 催化剂的催化活性和对目标产物的选择性跟活性组分Pt、Ru比例有关. 随着Pt/Ru比例的减小, 目标产物o-CAN的选择性有所升高, 然而反应物o-CNB的转化率有所下降. 当Pt/Ru的质量比为2时, o-CNB的转化率降为76.5%, 而目标产物o-CAN的选择性仍然为100%. 与此同时, 我们还对Pt-Ru/Fe3O4/C催化剂高的催化活性和目标产物的高选择性可能的原因进行了分析.

关键词: 选择性加氢无溶剂氯代硝基苯氯代苯胺四氧化三铁    
Abstract:

Aseries of Fe3O4-modified Pt-Ru/C nanocomposite catalysts were prepared by impregnation and hydrazine hydrate reduction of Pt and Ru precursors. Various Pt/Ru mass ratios of the catalysts were examined in terms of catalytic activity. They were characterized by transmission electron microscopic measurements (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The average diameters of the catalysts with different mass ratios of Pt/Ru were in a range of 2.2-2.5 nmwith narrowsize distributions. The valence states of the nanoparticles indicate strong interactions between the Pt and the carbon support or with Fe3O4. The XRDpatterns of the 8Pt-1Ru/Fe3O4/C, 6Pt-1Ru/Fe3O4/ C, 4Pt-1Ru/Fe3O4/C, and 2Pt-1Ru/Fe3O4/Ccatalysts have similar profiles, which are attributed to the cubic phase of pure Fe3O4 (i.e., no Pt or Ru present). These catalysts selectively hydrogenate ortho-chloronitrobenzene (o-CNB) to the corresponding ortho-chloroaniline (o-CAN) under solvent-free conditions that not only allowed high substrate concentrations promoting the hydrogenation reaction, but also enabled easy product separation and purification. They exhibited excellent catalytic activity (turnover frequency (TOF) range: 0.98-2.09 mol·mol-1·s-1) and up to 100% o-CAN selectivity, which was composition-dependent. The o-CAN yield selectivity monotonically increased with the proportion of Ru; however, the catalytic activity decreased. The high catalytic activity and selectivity of Pt-Ru/Fe3O4/Cnanoparticles are attributed to electron transfer between the two metals and Fe3O4.

Key words: Selective hydrogenation    Solvent-free    Chloronitrobenzene    Chloroaniline    Ferroferric oxide    Platinum    Ruthenium
收稿日期: 2013-04-10 出版日期: 2013-08-15
中图分类号:  O643  
通讯作者: 孙鲲鹏     E-mail: sunkp@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王亚南
杨玉霞
李永文
赖俊华
孙鲲鹏

引用本文:

王亚南, 杨玉霞, 李永文, 赖俊华, 孙鲲鹏. Fe3O4修饰的Pt-Ru/C纳米催化剂的制备及其在无溶剂条件下邻氯硝基苯选择性加氢的催化性能[J]. 物理化学学报, 2013, 29(10): 2239-2244, 10.3866/PKU.WHXB201308151

WANG Ya-Nan, YANG Yu-Xia, LI Yong-Wen, LAI Jun-Hua, SUN Kun-Peng. Preparation of Fe3O4 Modified Pt-Ru/C Nanocatalysts and Their Catalytic Properties for the Selective Hydrogenation of ortho-Chloronitrobenzene under Solvent-Free Conditions. Acta Phys. -Chim. Sin., 2013, 29(10): 2239-2244, 10.3866/PKU.WHXB201308151.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201308151        http://www.whxb.pku.edu.cn/CN/Y2013/V29/I10/2239

(1) Wang, X. D.; Liang, M. H.; Zhang, J. L.; Wang, Y. Curr. Organ. Chem. 2007, 11, 299. doi: 10.2174/138527207779940856
(2) Sikhwivhilu, L. M.; Coville, N. J.; Pulimaddi, B. M.;Venkatreddy, J.; Vishwanathan, V. Catal. Commun. 2007, 8,1999. doi: 10.1016/j.catcom.2007.03.023
(3) Liang, C. H.; Han, J. G.; Shen, K. H.; Wang, L. G.; Zhang, D.F.; Freeman, H. S. Chem. Eng. J. 2010, 165, 709. doi: 10.1016/j.cej.2010.10.022
(4) Xiao, C. X.; Wang, H. Z.; Mu, X. D.; Kou, Y. J. Catal. 2007,250, 25. doi: 10.1016/j.jcat.2007.05.009
(5) Yao, N.; Chen, J. X.; Zhang, J. X.; Zhang, J. Y. Catal. Commun.2008, 9, 1510. doi: 10.1016/j.catcom.2007.12.022
(6) Chen, Y. Z.; Chen, Y. C. Appl. Catal. A 1994, 115, 45. doi: 10.1016/0926-860X(94)80377-3
(7) Zhao, B. Z.; Chen, Y. W. J. Non-Cryst. Solids 2010, 356, 839.doi: 10.1016/j.jnoncrysol.2010.01.009
(8) Kosak, J. R. Ann. NY Acad. Sci. 1970, 172, 175. doi: 10.1111/nyas.1970.172.issue-9
(9) Jiang, L. C.; Gu, H. Z.; Xu, X. Z.; Yan, X. H. J. Mol. Catal. A2009, 310, 144. doi: 10.1016/j.molcata.2009.06.009
(10) Xie, Y. L.; Xiao, N.; Ling, Z.; Liu, Y.; Yu, C.; Qiu, J. S. Chin. J. Catal. 2012, 33, 1883. [解雅玲, 肖南,凌铮,柳月,于畅,邱介山. 催化学报, 2012, 33, 1883.] doi: 10.1016/S1872-2067(11)60451-8
(11) Yan, X. H.; Sun, J. Q.; Xu, Y. H.; Yang, J. F. Chin. J. Catal.2006, 27, 119. [严新焕,孙军庆, 徐颖华, 杨建峰. 催化学报,2006, 27, 119.] doi: 10.1016/S1872-2067(06)60010-7
(12) Xu, X. Z.; Yang, J. F.; Li, X. N.; Yan, X. H. Acta Phys. -Chim. Sin. 2008, 24 (1), 121. [许兴中, 杨建锋,李小年, 严新焕.物理化学学报, 2008, 24 (1), 121.] doi: 10.3866/PKU.WHXB20080121
(13) Coq, B.; Tijani, A.; Dutartre, R.; Figuéras, F. J. Mol. Catal.1993, 79, 253. doi: 10.1016/0304-5102(93)85106-4
(14) Tijani, A.; Coq, B.; Figuéras, F. Appl. Catal. 1991, 76, 255. doi: 10.1016/0166-9834(91)80051-W
(15) Dovell, F. S.; Greenfield, H. J. Am. Chem. Soc. 1965, 87,2767. doi: 10.1021/ja01090a050
(16) Zuo, B. J.; Wang, Y.; Wang, Q. L.; Zhang, J. L.; Wu, N. Z.;Peng, L. D.; Gui, L. L.; Wang, X. D.; Wang, R. M.; Yu, D. P.J. Catal. 2004, 222, 493. doi: 10.1016/j.jcat.2003.12.007
(17) Pietrowski, M.; Wojciechowska, M. Catal. Today 2009, 142,211. doi: 10.1016/j.cattod.2008.09.040
(18) Winans, C. F. J. Am. Chem. Soc. 1939, 61, 3564. doi: 10.1021/ja01267a101
(19) Dunworth, W. P.; Nord, F. F. J. Am. Chem. Soc. 1952, 74,1459. doi: 10.1021/ja01126a029
(20) Liu, M. H.; Zhang, J.; Liu, J. Q.; Yu, W. W. J. Catal. 2011, 278,1. doi: 10.1016/j.jcat.2010.11.009
(21) Raltzly, B.; Phillips, A. P. J. Am. Chem. Soc. 1946, 68, 261. doi: 10.1021/ja01206a034
(22) Mao, J. Z.; Yan, X. H.; Gu, H. Z.; Jiang, L. C. Chin. J. Catal.2009, 30, 182. [毛建忠, 严新焕,顾辉子, 江玲超.催化学报, 2009, 30, 182.]
(23) Wang, F.; Liu, J. H.; Yin, Y. Q.; Xu, X. L. Acta Phys. -Chim. Sin.2009, 25 (8), 1678. [王芳, 刘俊华,殷元骐, 徐贤伦.物理化学学报, 2009, 25 (8), 1678.] doi: 10.3866/PKU.WHXB20090814
(24) Liu, M.; Yu, W.; Liu, H. J. Mol. Catal. A 1999, 138, 295. doi: 10.1016/S1381-1169(98)00159-9
(25) Pietrowski, M.; Zieliński, M.; Wojciechowska, M.ChemCatChem 2011, 3, 835. doi: 10.1002/cctc.v3.5
(26) Sun, Z. Y.; Zhang, H. Y.; An, G. M.; Yang, G. Y.; Liu, Z. M.J. Mater. Chem. 2010, 20, 1947.
(27) Lian, C.; Liu, H. Q.; Xiao, C.; Yang, W.; Zhang, K.; Liu, Y.;Wang, Y. Chem. Commun. 2012, 48, 3124. doi: 10.1039/c2cc16620h
(28) Liu, M. H.; Mo, X. X.; Liu, Y. Y.; Xiao, H. L.; Zhang, Y.; Jing,J. Y.; Colvin, V. L.; William, W. Y. Appl. Catal. A 2012, 439,192.
(29) Cheney, B. A.; Lauterbach, J. A.; Chen, J. G. Appl. Catal. A2011, 394, 41. doi: 10.1016/j.apcata.2010.12.021
(30) Zhao, T. T.; Lin, R.; Zhang, L.; Cao, C. H.; Ma, J. X. Acta Phys. -Chim. Sin. 2013, 29 (8), 1745. [赵天天,林瑞,张路,曹春晖,马建新. 物理化学学报, 2013, 29 (8),1745.] doi: 10.3866/PKU.WHXB201305101
(31) Igarashi, H.; Fujino, T.; Zhu, Y.; Uchida, H.; Watanabe, M.Phys. Chem. Chem. Phys. 2001, 3, 306. doi: 10.1039/b007768m
(32) Sun, Z. Y.; Wang, X.; Liu, Z. M.; Zhang, H. Y.; Yu, P.; Mao, L.Q. Langmuir 2010, 26, 12383. doi: 10.1021/la101060s
(33) Holmgren, A.; Duprez, D.; Andersson, B. J. Catal. 1999, 182,441. doi: 10.1006/jcat.1998.2334
(34) Sen, S.; Sen, F.; Gökagac, G. Phys. Chem. Chem. Phys. 2011,13, 6784. doi: 10.1039/c1cp20064j
(35) Yang, X. L.; Zhang, W. Q.; Xia, C. G.; Xiong, X. M.; Mu, X. Y.;Hu, B. Catal. Commun. 2010, 11, 867. doi: 10.1016/j.catcom.2010.03.008
(36) Allen, G. C.; Curtis, M. T.; Hooper, A. J.; Tucker, P. M. J. Chem. Soc. Dalton 2004, 1525.

[1] 骆明川,孙英俊,秦英楠,杨勇,吴冬,郭少军. 维度调控策略提升铂基纳米晶氧还原催化研究进展[J]. 物理化学学报, 2018, 34(4): 361-376.
[2] 刘甜,黎军,刘维佳,朱育丹,陆小华. 简单的配体改变调控钌配合物催化还原CO2的活性:硼基配体的对位效应和Ru―H键的性质[J]. 物理化学学报, 2018, 34(10): 1097-1105.
[3] 于景华,李文文,朱红. 管径对碳纳米管负载铂催化剂氧还原的影响[J]. 物理化学学报, 2017, 33(9): 1838-1845.
[4] 尹璐,梁程,陈可先,赵琛烜,姚加,李浩然. 含TEMPO配合物的合成、表征、谱学性质及光猝灭机理[J]. 物理化学学报, 2017, 33(7): 1390-1398.
[5] 翟萧,丁轶. 纳米多孔金属电催化剂在氧还原反应中的应用[J]. 物理化学学报, 2017, 33(7): 1366-1378.
[6] 连超,张垲,王远. 氧化铁负载铂纳米簇催化卤代硝基苯本体氢化性质研究[J]. 物理化学学报, 2017, 33(5): 984-992.
[7] 黄明辉,金碧瑶,赵莲花,孙世刚. PtNiSnO2/C的制备、表征及其电催化氧化乙醇活性[J]. 物理化学学报, 2017, 33(3): 563-572.
[8] 王丹,刘传勇,龙玥,宋恺,黄维. 尺寸可控的单分散四氧化三铁微球的省时制备[J]. 物理化学学报, 2017, 33(11): 2310-2316.
[9] 常乔婉,肖菲,徐源,邵敏华. 核-壳结构氧还原反应电催化剂[J]. 物理化学学报, 2017, 33(1): 9-17.
[10] 卢善富,彭思侃,相艳. 双极界面聚合物膜燃料电池研究进展[J]. 物理化学学报, 2016, 32(8): 1859-1865.
[11] 毕慧子,窦镕飞,王浩,裴燕,乔明华,孙斌,宗保宁. Ru/氧化物催化剂在甲苯部分加氢反应中的载体效应[J]. 物理化学学报, 2016, 32(7): 1765-1774.
[12] 左会文,陆春海,任玉荣,李奕,章永凡,陈文凯. 单层石墨相氮化碳负载Pt4团簇吸附O2的第一性理论研究[J]. 物理化学学报, 2016, 32(5): 1183-1190.
[13] 朱守圃,吴甜,苏海明,瞿姗姗,解永娟,陈铭,刁国旺. 水热法制备Fe3O4/rGO纳米复合物作为锂离子电池阳极材料[J]. 物理化学学报, 2016, 32(11): 2737-2744.
[14] 李舒爽,陶磊,张奇,刘永梅,曹勇. 纳米金催化的绿色合成与清洁反应研究新进展[J]. 物理化学学报, 2016, 32(1): 61-74.
[15] 张杰,窦美玲,王峰,刘景军,李志林,吉静,宋夜. PDDA修饰的碳纳米管载铂电催化剂的合成及其在碱性条件下的氧气还原反应催化性能[J]. 物理化学学报, 2015, 31(9): 1727-1732.