Please wait a minute...
物理化学学报  2014, Vol. 30 Issue (4): 628-639    DOI: 10.3866/PKU.WHXB201401211
理论与计算化学     
亲电取代反应中活性位点预测方法的比较
付蓉, 卢天, 陈飞武
北京科技大学化学与生物工程学院化学与化学工程系, 北京100083
Comparing Methods for Predicting the Reactive Site of Electrophilic Substitution
FU Rong, LU Tian, CHEN Fei-Wu
Department of Chemistry and Chemical Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
 全文: PDF(924 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

预测发生亲电取代反应的活性位点具有重要的理论和实际意义. 目前已提出了许多基于反应物自身电子结构的预测方法. 本文选择14 个单取代苯和8 个双取代苯作为测试集,对14 种预测方法的可靠性进行了详细的比较分析. 结果表明,福井函数、平均局部离子化能等体现局部电子软度的方法特别适合含有邻对位定位基的单取代苯和双取代苯体系,但对于含有单个间位定位基的体系,这类方法往往预测失败. 基于静电效应的预测方法整体表现明显不如体现局部软度的方法,但更适合含有单个间位定位基的体系. 对所有体系预测能力最稳健的是双描述符,因此可以作为普适性的预测方法.

关键词: 亲电取代分子表面福井函数双描述符静电势原子电荷轨道成分    
Abstract:

Predicting the reactivity of electrophilic substitution at different sites is of theoretical and practical significance, and many prediction methods based on the electronic structure of reactants have been proposed. We compared the reliability of 14 prediction methods, using 14 monosubstituted and 8 disubstituted benzenes as test sets. Methods reflecting local electronic softness, such as the Fukui function and average local ionization energy, are well-suited to monosubstituted benzenes with ortho-para directing groups and disubstituted benzenes. However, these methods often fail for systems containing a single meta directing group. Methods reflecting electrostatic effects perform worse overall than those reflecting local softness, but are better suited to systems containing a single meta directing group. Dual descriptor is the most overall robust method, and can be regarded as a universal prediction method.

Key words: Electrophilic substitution    Molecular surface    Fukui function    Dual descriptor    Electrostatic potential    Atomic charge    Orbital composition
收稿日期: 2013-11-18 出版日期: 2014-01-21
中图分类号:  O641  
基金资助:

国家自然科学基金(21173020)资助项目

通讯作者: 陈飞武     E-mail: chenfeiwu@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
付蓉
卢天
陈飞武

引用本文:

付蓉, 卢天, 陈飞武. 亲电取代反应中活性位点预测方法的比较[J]. 物理化学学报, 2014, 30(4): 628-639.

FU Rong, LU Tian, CHEN Fei-Wu. Comparing Methods for Predicting the Reactive Site of Electrophilic Substitution. Acta Phys. -Chim. Sin., 2014, 30(4): 628-639.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201401211        http://www.whxb.pku.edu.cn/CN/Y2014/V30/I4/628

(1) Koleva, G.; Galabov, B.; Kong, J.; Schaefer, H. F.; Schleyer, P. v. R. J. Am. Chem. Soc. 2011, 133, 19094. doi: 10.1021/ja201866h
(2) Kong, J.; Galabov, B.; Koleva, G.; Zou, J.-J.; Schaefer, H. F.; Schleyer, P. v. R.Angew. Chem. Int. Edit. 2011, 50, 6809. doi: 10.1002/anie.201101852
(3) Esteves, P. M.; de M. Carneiro, J. W.; Cardoso, S. P.; Barbosa, A. G. H.; Laali,K . K.; Rasul, G.; Prakash, G. K. S.; Olah, G. A. J. Am. Chem. Soc. 2003, 125, 4836. doi: 10.1021/ja021307w
(4) Hadzic, M.; Braïda, B.; Volatron, F. Org. Lett. 2011, 13, 1960. doi: 10.1021/ol200327s
(5) Xing, Q.; Xu, R.; Zhou, Z.; Pei, W. Basic Organic Chemistry, 2nd ed.;H igher Education Press: Beijing, 1993. [邢其毅, 徐瑞秋, 周政, 裴基础. 基础有机化学, 第二版; 北京: 高等教育出版社, 1993]
(6) Marx, D.; Hutter, J. Ab Initio Molecular Dynamics-Basic Theory and Advanced Methods; Cambridge University Press: Cambridge, 2009.
(7) Jensen, F. Introduction to Computational Chemistry, 2nd ed.; John Wiley &S ons: West Sussex, 2007; pp 487-492.
(8) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036
(9) Morell, C.; Grand, A.; Toro-Labbé, A. J. Phys. Chem. A 2004, 109, 205.
(10) Murray, J. S.; Politzer, P. Electrostatic Potentials: Chemical Applications. InEncyclopedia of Computational Chemistry; Schleyer, P. v. R. Ed.; John Wiley & Sons:W est Sussex, 1998; Vol. 2, pp 912-920.
(11) Lu, T.; Chen, F. W.Acta Phys. -Chim. Sin. 2012, 28, 1. [卢天, 陈飞武.物理化学学报, 2012, 28, 1.] doi: 10.3866/PKU.WHXB2012281
(12) Politzer, P.; Murray, J.; Bulat, F. J. Mol. Model. 2010, 16, 1731. doi: 10.1007/s00894-010-0709-5
(13) Murray, J. S.; Politzer, P. WIREs: Comp. Mol. Sci. 2011, 1, 153. doi: 10.1002/wcms.19
(14) Politzer, P.; Murray, J. S. Molecular Electrostatic Potentials and ChemicalR eactivity. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B.E ds.; John Wiley & Sons: New York, 1991; Vol. 2, pp 273-312.
(15) Politzer, P.; Murray, J. S. The Electrostatic Potential as a Guide to Molecular Interactive Behavior. In Chemical Reactivity Theory: A Density Functional View;Chattaraj, P. K. Ed.; CRC Press: Boca Raton, 2009.
(16) Geerlings, P.; Langenaeker, W.; Proft, F. D.; Baeten, A. Molecular Electrostatic Potentials vs DFT Descriptors of Reactivity. In Molecular Electrostatic Potentials: Concepts and Applications; Murray, J. S., Sen, K. Eds.; Elsevier Science B.V: Amsterdam, 1996.
(17) Politzer, P.; Murray, J. S.; Concha, M. C. Int. J. Quantum Chem. 2002, 88,19.
(18) Politzer, P.; Laurence, P. R.; Jayasuriya, K. Environ. Health Perspect. 1985,61, 191. doi: 10.1289/ehp.8561191
(19) Sjoberg, P.; Politzer, P. J. Phys. Chem. 1990, 94, 3959. doi: 10.1021/j100373a017
(20) Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. J. Am. Chem. Soc. 1987, 109, 7968. doi: 10.1021/ja00260a006
(21) Lu, T.; Chen, F. W. J. Mol. Graph. Model. 2012, 38, 314. doi: 10.1016/j.jmgm.2012.07.004
(22) Murray, J. S.; Peralta-Inga, Z.; Politzer, P.; Ekanayake, K.; LeBreton, P. Int. J. Quantum Chem. 2001, 83, 245.
(23) Sjoberg, P.; Murray, J. S.; Brinck, T.; Politzer, P. Can. J. Chem. 1990, 68,1 440. doi: 10.1139/v90-001
(24) Politzer, P.; Murray, J. S. The Average Local Ionization Energy: Concepts and Applications. In Theoretical Aspects of Chemical Reactivity; Toro-Labbé, A. Ed.;Elsevier: Amsterdam, 2007; pp 119-137.
(25) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588
(26) Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361.
(27) Weinhold, F. Natural Bond Orbital Methods. In Encyclopedia of Computational Chemistry; Schleyer, P. v. R. Ed.; John Wiley & Sons: West Sussex,1998; Vol.2, pp 1792-1811.
(28) Hirshfeld, F. L. Theor. Chem. Acc. 1977, 44, 129.
(29) Lu, T.; Chen, F. W. J. Theor. Comp. Chem. 2012, 11, 163. doi: 10.1142/S0219633612500113
(30) Bader, F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, 1994.
(31) Fukui, K. Theory of Orientation and Stereoselection. In Orientation and Stereoselection; Springer: Berlin, 1970; Vol. 15/1, pp 1-85.
(32) Lu, T.; Chen, F. W. Acta Chim. Sin. 2011, 69, 2393. [卢天, 陈飞武. 化学学报, 2011, 69, 2393.]
(33) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报,2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
(34) Mohamed Imran, P. K.; Subramani, K. Acta Phys. -Chim. Sin. 2009, 25, 2357.[ Mohamed Imran, P. K.; Subramani, K. 物理化学学报, 2009, 25, 2357.] doi: 10.3866/PKU.WHXB20091131
(35) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708. doi: 10.1021/ja00279a008
(36) Jin, J. L.; Li, H. B.; Lu, T.; Duan, Y. A.; Geng, Y.; Wu, Y.; Su, Z. M. J. Mol. Model. 2013, 19, 3437. doi: 10.1007/s00894-013-1845-5
(37) Manzetti, S.; Lu, T. J. Phys. Org. Chem. 2013, 26, 473. doi: 10.1002/poc.v26.6
(38) Oláh, J.; Van Alsenoy, C.; Sannigrahi, A. B. J. Phys. Chem. A 2002, 106,3 885.
(39) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. doi: 10.1021/ja00905a001
(40) Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723
(41) Roy, R. K.; Krishnamurti, S.; Geerlings, P.; Pal, S. J. Phys. Chem. A 1998,102, 3746. doi: 10.1021/jp973450v
(42) Domingo, L. R.; Perez, P.; Saez, J. A. RSC Adv. 2013, 3, 1486. doi: 10.1039/c2ra22886f
(43) Fuster, F.; Sevin, A.; Silvi, B. J. Phys. Chem. A 2000, 104, 852. doi: 10.1021/jp992783k
(44) Lu, T.; Chen, F. W. Acta Phys. -Chim. Sin. 2011, 27, 2786. [卢天, 陈飞武 . 物理化学学报, 2011, 27, 2786.] doi: 10.3866/PKU.WHXB20112786
(45) MacDougall, P. J.; Henze, C. E. Theor. Chem. Acc. 2001, 105, 345. doi: 10.1007/s002140000225
(46) Bader, R. F. W.; Chang, C. J. Phys. Chem. 1989, 93, 2946. doi: 10.1021/j100345a020
(47) Koleva, G.; Galabov, B.; Wu, J. I.; Schaefer III, H. F.; Schleyer, P. v. R. J. Am. Chem. Soc. 2009, 131, 14722.
(48) Zhou, Z.; Parr, R. G. J. Am. Chem. Soc. 1990, 112, 5720. doi: 10.1021/ja00171a007
(49) Ehresmann, B.; Martin, B.; Horn, A. C.; Clark, T. J. Mol. Model. 2003, 9,342.
(50) Bruice, P. Y. Organic Chemistry, 4th ed.; Prentice Hall: New Jersey, 2004.
(51) McMurry, J. Organic Chemistry, 7th ed.; Thomson Higher Education:B elmont, 2008.
(52) Morrison, R. T.; Boyd, R. N. Organic Chemistry, 6th ed.; Prentice Hall, Inc.:New Jersey, 1992.
(53) Wang, J.T; Hu, Q.M; Zhang, B. Z.; Wang, Y.M. Organic Chemistry, 2nd ed.; NanKai University Press: Tianjin, 1993. [王积涛, 胡青眉, 张宝申, 王永梅. 有机化学,第二版; 天津: 南开大学出版社, 1993]
(54) Geerlings, P.; Langenaeker, W.; Proft, F. D.; Baeten, A. Molecular Electrostatic Potentials vs. DFT Descriptors of Reactivity. In Molecular Electrostatic Potentials: Concepts and Applications; Murray, J. S., Sen, K. Eds.; Elsevier Science:A msterdam, 1996; pp 587-617.
(55) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, RevisionB .02; Gaussian Inc.: Wallingford, CT, 2003.
(56) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304
(57) Hariharan, P. C.; Pople, J. A. Theor. Chem. Acc. 1973, 28, 213.
(58) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265. doi: 10.1063/1.447079
(59) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. doi: 10.1063/1.1677527
(60) Multiwfn http://Multiwfn.codeplex.com (accessed Oct 10, 2013).
(61) Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5

[1] 闫超咸,杨帆,吴睿智,周大刚,杨兴,周盼盼. 自然轨道福井函数和成键活性描述符应用于解释苯硫醌和1, 3-二烯的[2+4]和[4+2]环加成反应中的成键机理[J]. 物理化学学报, 2018, 34(5): 497-502.
[2] 曹静思,韦美菊,陈飞武. 极性分子键角与键偶极矩的关系[J]. 物理化学学报, 2016, 32(7): 1639-1648.
[3] 刘芬, 邹建卫, 胡桂香, 蒋勇军. 有机污染物在碳纳米管吸附的定量结构-性质关系[J]. 物理化学学报, 2014, 30(9): 1616-1624.
[4] 吴选军, 赵鹏, 方继敏, 王杰, 刘保顺, 蔡卫权. 新型掺杂多孔芳香骨架材料的储氢性能模拟[J]. 物理化学学报, 2014, 30(11): 2043-2054.
[5] 刘良红, 张鹏飞, 黄莺. 用密度泛函活性理论和Hammett常数预测单双取代苯酚的酸性[J]. 物理化学学报, 2013, 29(03): 508-515.
[6] 何婧, 徐志广, 曾允秀, 许旋, 喻兰, 王琦, 刘海洋. 取代基对咔咯锰(V)-氧配合物Mn―O的成键影响[J]. 物理化学学报, 2012, 28(07): 1658-1664.
[7] 陈战. 隐藏高分子界面及生物界面分子结构的和频振动光谱研究[J]. 物理化学学报, 2012, 28(03): 504-521.
[8] 卢天, 陈飞武. 原子电荷计算方法的对比[J]. 物理化学学报, 2012, 28(01): 1-18.
[9] 庞瑾瑜, 吕鑫, 张健, 苑世领, 徐桂英. 介观模拟方法研究高分子表面活性剂在水介质中的聚集行为[J]. 物理化学学报, 2011, 27(03): 520-529.
[10] 李亚娜, 吕洋, 周立川, 陈理, 李慎敏. 用第一性原理方法获取周期体系中原子的部分电荷[J]. 物理化学学报, 2010, 26(10): 2793-2800.
[11] 刘述斌. 概念密度泛函理论及近来的一些进展[J]. 物理化学学报, 2009, 25(03): 590-600.
[12] 王芳平;杜新贞;王春;董小丽;陈慧. 聚丙烯酸接枝辛基酚聚氧乙烯醚的合成、表征和胶束化[J]. 物理化学学报, 2008, 24(02): 350-354.
[13] 邹建卫;蒋勇军;胡桂香;曾敏;庄树林;俞庆森. 多氯联苯的定量结构-性质(活性)关系[J]. 物理化学学报, 2005, 21(03): 267-272.
[14] 侯廷军;章威;黄钦;乔学斌;徐筱杰. 基于原子表面的蛋白质水合自由能预测模型[J]. 物理化学学报, 2003, 19(08): 723-726.
[15] 郭明;邹建卫;赵文娜;商志才;俞庆森. 基于三维静电势参数研究C60溶解性的构效关系[J]. 物理化学学报, 2003, 19(05): 432-435.