物理化学学报 >> 2015, Vol. 31 >> Issue (5): 899899-904.doi: 10.3866/PKU.WHXB201503201

理论与计算化学 上一篇    下一篇

基于曲率和电子结构的掺杂C50和C70富勒烯的稳定性研究

包金小1, 王晓霞1, 吴铜伟1, 贾桂霄1, 章永凡2   

  1. 1 内蒙古科技大学材料与冶金学院, 内蒙古包头014010;
    2 福州大学化学系, 福州350108
  • 收稿日期:2014-11-24 修回日期:2015-03-20 发布日期:2015-05-08
  • 通讯作者: 贾桂霄 E-mail:guixiao.jia@163.com
  • 基金资助:

    内蒙古科技大学材料与冶金学院青年人才孵化器基金(2014CY012), 内蒙古自治区高等学校科学技术研究项目基金(NJZZ13128)和内蒙古自治区自然科学基金(2014BS0507)资助项目

Stability of Doped C50 and C70 Based on Curvature and Electronic Structures

BAO Jin-Xiao1, WANG Xiao-Xia1, WU Tong-Wei1, JIA Gui-Xiao1, ZHANG Yong-Fan2   

  1. 1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Monggol Autonomous Region, P. R. China;
    2 Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
  • Received:2014-11-24 Revised:2015-03-20 Published:2015-05-08
  • Contact: JIA Gui-Xiao E-mail:guixiao.jia@163.com
  • Supported by:

    The project was supported by the Talent Incubation Funding of School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, China (2014CY012), Research Projects of Inner Mongolia Colleges and Universities, China (NJZZ13128), and Natural Science Foundation of Inner Mongolia, China (2014BS0507).

摘要:

使用密度泛函理论(DFT)-B3LYP/6-31G*方法研究了B、N、Si、P和Co在C50和C70中的掺杂能和电子结构, 并基于曲率理论和电子结构探讨了掺杂富勒烯的结构稳定性. 计算结果表明, 掺杂能随着原子曲率的增大而减小, 随着掺杂物种原子半径的增大而增大, B、N、P和Co的掺杂有利于C50结构的稳定, 而B和N的掺杂不利于C70结构的稳定; 除了用于反映原子活性的曲率主要决定掺杂反应性, 各不等价碳原子在C50和C70的最高占据分子轨道(HOMO)中所占成分对掺杂能的影响也很大, 且其成分越大越有利于掺杂. 此外, 掺杂原子得失电子情况与其电负性有关. 本工作将为富勒烯结构稳定性的研究提供理论依据.

关键词: 富勒烯, 掺杂, 曲率理论, 稳定性, 电子结构

Abstract:

The doping energies and electronic structures of B, N, Si, P, and Co in C50 and C70 were investigated using the density functional theory (DFT)-B3LYP/6-31G* method, and the structural stabilities of doped fullerenes were investigated based on curvature theory and the electronic structures. The calculated results showed that the doping energies decreased with increasing curvature, and increased with increasing atomic radius of the doping species. Doping with B, N, P, and Co stabilized the C50 structure. However, doping with B and N was disadvantageous for the structural stability of C70. The doping reactivities were mainly determined by the curvature and related to the percentage of nonequivalent carbon atoms in the highest occupied molecular orbital (HOMO), and a large percentage was beneficial for the doping stability. In addition, whether the doped atoms accepted or lost electrons depended on their electronegativity. This work will be helpful for the stabilization of fullerene structures in experiment.

Key words: Fullerene, Doping, Curvature theory, Stability, Electronic structrue

MSC2000: 

  • O641