Please wait a minute...
物理化学学报  2016, Vol. 32 Issue (5): 1062-1071    DOI: 10.3866/PKU.WHXB201603231
展望     
下一代能源存储技术及其关键电极材料
杨泽,张旺,沈越,袁利霞,黄云辉*()
Next-Generation Energy Storage Technologies and Their Key Electrode Materials
Ze YANG,Wang ZHANG,Yue SHEN,Li-Xia YUAN,Yun-Hui HUANG*()
 全文: PDF(2187 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

由于能源危机与环境问题,全球能源的消耗正逐渐从传统化石能源转向其它清洁高效能源。高效清洁能源的存储是电动汽车和智能电网的关键技术,对新能源、新材料和新能源汽车国家战略新兴产业的发展具有重要意义。锂离子电池是目前广泛应用的一种能源存储器件。电动汽车和智能电网对能量密度、功率密度、循环寿命和成本等方面的要求越来越高,传统的锂离子电池面临巨大挑战,发展下一代能源存储技术迫在眉睫。高能量密度的锂硫电池和锂空气电池,低成本、高安全性的室温钠离子电池受到了越来越多的关注。本文简要总结了近年来锂硫电池、锂空气电池和钠离子电池及其关键电极材料的研究进展,并对这些新型能源存储技术存在的问题和未来的前景做出了分析和展望。

关键词: 能源存储锂硫电池锂空气电池钠离子电池    
Abstract:

In response to energy shortages and environmental concerns, global energy consumption is transitioning from a reliance on fossil fuels to multiple, clean and efficient power sources. Energy storage is central to the development of electric vehicles and smart grids, and hence to the emerging nationally strategic industries. Today, lithium-ion batteries (LIBs) are among the most widely used energy storage devices in daily life, but they face a severe challenge to meet the rigorous requirements of energy/power density, cycle life and cost for electric vehicles and smart grids. The search for next-generation energy storage technologies with large energy density, long cycle life, high safety and low cost is vital in the post-LIB era. Consequently, lithium-sulfur and lithium-air batteries with high energy density, and safe, low-cost room-temperature sodium-ion batteries, have attracted increasing interest. In this article, we briefly summarize recent progress in next-generation rechargeable batteries and their key electrode materials, with a particular focus on Li-S, Li-air, and Na-ion batteries. The prospects for the future development of these new energy storage technologies are also discussed.

Key words: Energy storage    Lithium-sulfur battery    Lithium-air battery    Sodium-ion battery
收稿日期: 2016-02-15 出版日期: 2016-03-23
中图分类号:  O646  
基金资助: 国家自然科学基金(21273087);国家自然科学基金(20803042)
通讯作者: 黄云辉     E-mail: huangyh@hust.edu.cn
作者简介: YANG Ze, received his PhD from Huazhong University of Science and Technology (HUST). He is now a postdoctoral researcher in University of Houston. His research interest focuses on cathode materials for lithium-ion and sodium-ion batteries|ZHANG Wang, received his BSc degree from Huazhong University of Science and Technology (HUST) in 2012. He is now a PhD candidate in HUST. His research interest focuses on rechargeable lithium-oxygen batteries|SHEN Yue, received his BSc, MSc and PhD from Peking University. He was a visiting student in Georgia Institute of Technology from 2008 to 2010. He then worked as a postdoctoral researcher in Huazhong University of Science and Technology in 2011. He is now an associate professor at HUST. His research interests mainly focus on lithium rechargeable batteries|YUAN Li-Xia, received her PhD at Wuhan University in 2007. She worked as a postdoctoral researcher in Tsinghua University from 2007 to 2009. She is now an associate professor at HUST. Her research interests mainly focus on lithium rechargeable batteries|HUANG Yun-Hui, received his BSc, MSc, and PhD from Peking University. In 2000, he worked as a postdoctoral researcher in Peking University. From 2002 to 2004, he worked as an associate professor in Fudan University and a JSPS fellow at Tokyo Institute of Technology, Japan. He then worked in the University of Texas at Austin for more than three years. In 2008, he became a chair professor of materials science in Huazhong University of Science and Technology. He is now the dean of the School of Materials Science and Engineering. His research group works on batteries of energy storage and conversion. For details please see the lab website: http://www.sysdoing.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨泽
张旺
沈越
袁利霞
黄云辉

引用本文:

杨泽,张旺,沈越,袁利霞,黄云辉. 下一代能源存储技术及其关键电极材料[J]. 物理化学学报, 2016, 32(5): 1062-1071.

Ze YANG,Wang ZHANG,Yue SHEN,Li-Xia YUAN,Yun-Hui HUANG. Next-Generation Energy Storage Technologies and Their Key Electrode Materials. Acta Physico-Chimica Sinca, 2016, 32(5): 1062-1071.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201603231        http://www.whxb.pku.edu.cn/CN/Y2016/V32/I5/1062

Fig 1  Scheme of a Li-S battery
Fig 2  Illustration of the electrode process for sulfur cathode
Fig 3  Scheme of a lithium air battery
Fig 4  Process of LAB cathode chemistry
Fig 5  Schematic illustration of a typical Na2Ti3O7/Na3V2(PO4)3 Na-ion battery
1 Yu H. ; Zhou H. J. Phys. Chem. Lett. 2013, 4, 1268.
doi: 10.1021/jz400032v
2 Manthiram A. ; Chemelewski K. ; Lee E. S. Energ Environ. Sci. 2014, 7, 1339.
doi: 10.1039/c3ee42981d
3 Sun Y. K. ; Chen Z. H. ; Noh H. J. ; Lee D. J. ; Jung H. G. ; Ren Y. ; Wang S. ; Yoon C. S. ; Myung S. T. ; Amine K. Nat. Mater. 2012, 11, 942.
doi: 10.1038/nmat3435
4 McDowell M. T. ; Lee S.W. ; Nix W. D. ; Cui Y. Adv. Mater. 2013, 25, 4966.
doi: 10.1002/adma.201301795
5 Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. ; Tarascon J. M. Nat. Mater. 2012, 11, 19.
doi: 10.1038/nmat3191
6 Manthiram A. ; Fu Y. ; Chung S. H. ; Zu C. ; Su Y. S. Chem. Rev. 2014, 114, 11751.
doi: 10.1021/cr500062v
7 Kim H. ; Hong J. ; Park K. Y. ; Kim H. ; Kim S.W. ; Kang K. Chem. Rev. 2014, 114, 11788.
doi: 10.1021/cr500232y
8 Yao Z. D. ; Wei W. ; Wang J. L. ; Yang J. ; Nuli Y. N. Acta Phys. -Chim. Sin. 2011, 27, 1005.
doi: 10.3866/PKU.WHXB20110345
姚真东; 魏巍; 王久林; 杨军; 努丽燕娜. 物理化学学报, 2011, 27, 1005.
doi: 10.3866/PKU.WHXB20110345
9 Ji X. ; Lee K. T. ; Nazar L. F. Nat. Mater. 2009, 8, 500.
doi: 10.1038/nmat2460
10 Li Z. ; Huang Y. ; Yuan L. ; Hao Z. ; Huang Y. Carbon 2015, 92, 41.
doi: 10.1016/j.carbon.2015.03.008
11 Li W. Y. ; Zheng G. Y. ; Yang Y. ; Seh Z.W. ; Liu N. ; Cui Y. Proc. Natl. Acad. Sci. USA 2013, 110, 7148.
doi: 10.1073/pnas.1220992110
12 Su Y. S. ; Fu Y. Z. ; Cochell T. ; Manthiram A. Nat. Commun. 2013, 4, 2985.
doi: 10.1038/ncomms3985
13 Liang X. ; Hart C. ; Pang Q. ; Garsuch A. ; Weiss T. ; Nazar L. F. Nat. Commun. 2015, 6, 5682.
doi: 10.1038/ncomms6682
14 Pang Q. ; Kundu D. ; Cuisinier M. ; Nazar L. F. Nat. Commun. 2014, 5, 4759.
doi: 10.1038/ncomms5759
15 Tao X. ; Wang J. ; Ying Z. ; Cai Q. ; Zheng G. ; Gan Y. ; Huang H. ; Xia Y. ; Liang C. ; Zhang W. ; Cui Y. Nano Lett. 2014, 14, 5288.
doi: 10.1021/nl502331f
16 Zhou J. ; Li R. ; Fan X. ; Chen Y. ; Han R. ; Li W. ; Zheng J. ; Wang B. ; Li X. Energ. Environ. Sci. 2014, 7, 2715.
doi: 10.1039/C4EE01382D
17 Liang X. ; Garsuch A. ; Nazar L. F. Angew. Chem. Int. Edit. 2015, 54, 3907.
doi: 10.1002/anie.201410174
18 Gao J. ; Lowe M. A. ; Kiya Y. ; Abru?a H. D. J. Phys. Chem. C 2011, 115, 25132.
doi: 10.1021/jp207714c
19 Xin S. ; Gu L. ; Zhao N. H. ; Yin Y. X. ; Zhou L. J. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2012, 134, 18510.
doi: 10.1021/ja308170k
20 Li Z. ; Yuan L. ; Yi Z. ; Sun Y. ; Liu Y. ; Jiang Y. ; Shen Y. ; Xin Y. ; Zhang Z. ; Huang Y. Adv. Energy Mater. 2013, 4, 1301473.
doi: 10.1002/aenm.201301473
21 Wang J. ; He Y. S. ; Yang J. Adv. Mater. 2015, 27, 569.
doi: 10.1002/adma.v27.3
22 Gao J. ; Abru?a H. D. J. Phys. Chem. Lett. 2014, 5, 882.
doi: 10.1021/jz5001819
23 Gallagher K. G. ; Goebel S. ; Greszler T. ; Mathias M. ; Oelerich W. ; Eroglu D. ; Srinivasan V. Energ Environ. Sci. 2014, 7, 1555.
doi: 10.1039/c3ee43870h
24 Imanishi N. ; Luntz A. C. ; Bruce P. The Lithium Air Battery-Fundamentals Springer: New York, 2014, pp 94- 101.
25 Luntz A. C. ; McCloskey B. D. Chem. Rev. 2014, 114, 11721.
doi: 10.1021/cr500054y
26 Johnson L. ; Li C. ; Liu Z. ; Chen Y. ; Freunberger S. A. ; Tarascon J. M. ; Ashok P. C. ; Praveen B. B. ; Dholakia K. ; Bruce P. G. Nat. Chem. 2014, 6, 1091.
doi: 10.1038/nchem.2101
27 Aetukuri N. B. ; McCloskey B. D. ; Garcia J. M. ; Krupp L. E. ; Viswanathan V. ; Luntz A. C. Nat. Chem. 2015, 7, 50.
doi: 10.1038/NCHEM.2132
28 Khetan A. ; Luntz A. ; Viswanathan V. J. Phys. Chem. Lett. 2015, 6, 1254.
doi: 10.1021/acs.jpclett.5b00324
29 Viswanathan V. ; N?rskov J. K. ; Speidel A. ; Scheffler R. ; Gowda S. ; Luntz A. C. J. Phys. Chem. Lett. 2013, 4, 556.
doi: 10.1021/jz400019y
30 McCloskey B. D. ; Scheffler R. ; Speidel A. ; Bethune D. S. ; Shelby R. M. ; Luntz A. C. J. Am. Chem. Soc. 2011, 133, 18038.
doi: 10.1021/ja207229n
31 Chen Y. ; Freunberger S. A. ; Peng Z. ; Fontaine O. ; Bruce P. G. Nat. Chem. 2013, 5, 489.
doi: 10.1038/nchem.1646
32 Feng N. ; He P. ; Zhou H. ChemSusChem 2015, 8, 600.
doi: 10.1002/cssc.v8.4
33 Noked M. ; Schroeder M. A. ; Pearse A. J. ; Rubloff G.W. ; Lee S. B. J. Phys. Chem. Lett. 2016, 7, 211.
doi: 10.1021/acs.jpclett.5b02613
34 Zhu J. ; Yang D. ; Yin Z. ; Yan Q. ; Zhang H. Small 2014, 10, 3480.
doi: 10.1002/smll.v10.17
35 Xia C. ; Bender C. L. ; Bergner B. ; Peppler K. ; Janek J. Electrochem. Commun. 2013, 26, 93.
doi: 10.1016/j.elecom.2012.10.020
36 Li X. ; Faghri A. J. Electrochem. Soc. 2012, 159, A1747.
doi: 10.1149/2.043210jes
37 Shui J. L. ; Okasinski J. S. ; Kenesei P. ; Dobbs H. A. ; Zhao D. ; Almer J. D. ; Liu D. J. Nat. Commun. 2013, 4, 2255.
38 Salkus T. ; Dindune A. ; Kanepe Z. ; Ronis J. ; Urcinskas A. ; Kezionis A. ; Orliukas A. Solid State Ionics 2007, 178, 1282.
doi: 10.1016/j.ssi.2007.07.002
39 Bhargav A. ; Fu Y. J. Electrochem. Soc. 2015, 162, A1327.
doi: 10.1149/2.0851507jes
40 Hassoun J. ; Jung H. G. ; Lee D. J. ; Park J. B. ; Amine K. ; Sun Y. K. ; Scrosati B. Nano Lett. 2012, 12, 5775.
doi: 10.1021/nl303087j
41 Wang D. ; Xiao J. ; Xu W. ; Zhang J. G. J. Electrochem. Soc. 2010, 157, A760.
doi: 10.1149/1.3414828
42 Li X. ; Huang J. ; Faghri A. Energy 2015, 81, 489.
doi: 10.1016/j.energy.2014.12.062
43 Lim H. K. ; Lim H. D. ; Park K. Y. ; Seo D. H. ; Gwon H. ; Hong J. ; Goddard I.W. A. ; Kim H. ; Kang K. J. Am. Chem. Soc. 2013, 135, 9733.
doi: 10.1021/ja4016765
44 Matsui M. ; Wada A. ; Matsuda Y. ; Yamamoto O. ; Takeda Y. ; Imanishi N. Chem. Commun. 2015, 51, 3189.
doi: 10.1039/C4CC09535A
45 Whittingham M. S. Prog. Solid State Chem. 1978, 12, 41.
doi: 10.1016/0079-6786(78)90003-1
46 Nagelberg A. S. ; Worrell W. L. J. Solid State Chem. 1979, 29, 345.
47 Palomares V. ; Serras P. ; Villaluenga I. ; Hueso K. B. ; Carretero-González J. ; Rojo T. Energ. Environ. Sci. 2012, 5, 5884.
doi: 10.1039/c2ee02781j
48 Larcher D. ; Tarascon J. M. Nat. Chem. 2015, 7, 19.
doi: 10.1038/nchem.2085
49 Jian Z. L. ; Yuan C. C. ; Han W. Z. ; Lu X. ; Gu L. ; Xi X. K. ; Hu Y. S. ; Li H. ; Chen W. ; Chen D. T. ; Ikuhara Y. C. ; Chen L. Q. Adv. Funct. Mater. 2014, 24, 4265.
doi: 10.1002/adfm.v24.27
50 Yabuuchi N. ; Kajiyama M. ; Iwatate J. ; Nishikawa H. ; Hitomi S. ; Okuyama R. ; Usui R. ; Yamada Y. ; Komaba S. Nat. Mater. 2012, 11, 512.
doi: 10.1038/nmat3309
51 Mu L. Q. ; Xu S. Y. ; Li Y. M. ; Hu Y. S. ; Li H. ; Chen L. Q. ; Huang X. J. Adv. Mater. 2015, 27, 6928.
doi: 10.1002/adma.201502449
52 Yuan D. D. ; Liang X. M. ; Wu L. ; Cao Y. L. ; Ai X. P. ; Feng J.W. ; Yang H. X. Adv. Mater. 2014, 26, 6301.
doi: 10.1002/adma.201401946
53 Yu C. Y. ; Park J. S. ; Jung H. G. ; Chung K. Y. ; Aurbach D. ; Sun Y. K. ; Myung S. T. Energ. Environ. Sci. 2015, 8, 2019.
doi: 10.1039/C5EE00695C
54 Han M. H. ; Gonzalo E. ; Singh G. ; Rojo T. Energ. Environ. Sci. 2015, 8, 81.
doi: 10.1039/C4EE03192J
55 Barpanda P. ; Oyama G. ; Nishimura S. ; Chung S. C. ; Yamada A. Nat. Commun. 2014, 5, 4358.
doi: 10.1038/ncomms5358
56 Nazri G. A. ; Pistoia G. Lithium Batteries: Science, Technology Kluwer Academic: Boston, 2004, pp 453- 455.
57 Park Y. U. ; Seo D. H. ; Kwon H. S. ; Kim B. ; Kim J. ; Kim H. ; Kim I. ; Yoo H. I. ; Kang K. J. Am. Chem. Soc. 2013, 135, 13870.
doi: 10.1021/ja406016j
58 Fang Y. J. ; Xiao L. F. ; Ai X. P. ; Cao Y. L. ; Yang H. X. Adv. Mater. 2015, 27, 5895.
doi: 10.1002/adma.201502018
59 Qian J. F. ; Zhou M. ; Cao Y. L. ; Ai X. P. ; Yang H. X. Adv. Energ. Mater. 2012, 2, 410.
doi: 10.1002/aenm.v2.4
60 Lee H.W. ; Wang R. Y. ; Pasta M. ; Lee S.W. ; Liu N. ; Cui Y. Nat. Commun. 2014, 5, 5280.
doi: 10.1038/ncomms6280
61 Komaba S. ; Murata W. ; Ishikawa T. ; Yabuuchi N. ; Ozeki T. ; Nakayama T. ; Ogata A. ; Gotoh K. ; Fujiwara K. Adv. Funct. Mater. 2011, 21, 3859.
doi: 10.1002/adfm.v21.20
62 Wen Y. ; He K. ; Zhu Y. J. ; Han F. D. ; Xu Y. H. ; Matsuda I. ; Ishii Y. ; Cumings J. ; Wang C. Nat. Commun. 2014, 5, 4033.
63 Cao Y. ; Xiao L. ; Sushko M. L. ; Wang W. ; Schwenzer B. ; Xiao J. ; Nie Z. ; Saraf L. V. ; Yang Z. ; Liu J. Nano Lett. 2012, 12, 3783.
doi: 10.1021/nl3016957
64 Kim Y. ; Park Y. ; Choi A. ; Choi N. S. ; Kim J. ; Lee J. ; Ryu J. H. ; Oh S. M. ; Lee K. T. Adv. Mater. 2013, 25, 3045.
doi: 10.1002/adma.v25.22
65 Qian J. F. ; Wu X. Y. ; Cao Y. L. ; Ai X. P. ; Yang H. X. Angew. Chem. Int. Edit. 2013, 52, 4633.
doi: 10.1002/anie.201209689
66 Zhu Y. ; Wen Y. ; Fan X. ; Gao T. ; Han F. ; Luo C. ; Liou S. C. ; Wang C. ACS Nano 2015, 9, 3254.
doi: 10.1021/acsnano.5b00376
67 Xiao L. ; Cao Y. ; Xiao J. ; Wang W. ; Kovarik L. ; Nie Z. ; Liu J. Chem. Commun. 2012, 48, 3321.
doi: 10.1039/c2cc17129e
68 Wu L. ; Hu X. ; Qian J. ; Pei F. ; Wu F. ; Mao R. ; Ai X. ; Yang H. ; Cao Y. Energ. Environ. Sci. 2014, 7, 323.
doi: 10.1039/C3EE42944J
69 Sun J. ; Lee H.W. ; Pasta M. ; Yuan H. ; Zheng G. ; Sun Y. ; Li Y. ; Cui Y. Nat. Nanotechnol. 2015, 10, 980.
doi: 10.1038/nnano.2015.194
70 Wang S.W. ; Wang L. J. ; Zhu Z. Q. ; Hu Z. ; Zhao Q. ; Chen J. Angew. Chem. Int. Edit. 2014, 53, 5892.
doi: 10.1002/anie.201400032
71 Wang C. ; Xu Y. ; Fang Y. ; Zhou M. ; Liang L. ; Singh S. ; Zhao H. ; Schober A. ; Lei Y. J. Am. Chem. Soc. 2015, 137, 3124.
doi: 10.1021/jacs.5b00336
72 Luo W. ; Allen M. ; Raju V. ; Ji X. Adv. Energ. Mater. 2014, 4, 1400554.
doi: 10.1002/aenm.201400554
73 Yang Z. G. ; Zhang J. L. ; Kintner-Meyer M. C. ; Lu X. H. ; Choi D. ; Lemmon J. P. ; Liu J. Chem. Rev. 2011, 111, 3577.
doi: 10.1021/cr100290v
74 Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741
[1] 刘双,邵涟漪,张雪静,陶占良,陈军. 水系钠离子电池电极材料研究进展[J]. 物理化学学报, 2018, 34(6): 581-597.
[2] 陈克,孙振华,方若翩,李峰,成会明. 锂硫电池用石墨烯基材料的研究进展[J]. 物理化学学报, 2018, 34(4): 377-390.
[3] 张熙悦,黄雅兰,吴树炜,曾银香,于明浩,程发良,卢锡洪,童叶翔. 碳布负载的缺氧型Na2Ti3O7纳米带阵列作为高性能柔性钠离子电池负极材料[J]. 物理化学学报, 2018, 34(2): 219-226.
[4] 李君涛,吴娇红,张涛,黄令. 不同生物炭材料的制备及其在Li-S电池中的应用[J]. 物理化学学报, 2017, 33(5): 968-975.
[5] 刘帅,姚路,章琴,李路路,胡南滔,魏良明,魏浩. 高性能锂硫电池研究进展[J]. 物理化学学报, 2017, 33(12): 2339-2358.
[6] 方永进,陈重学,艾新平,杨汉西,曹余良. 钠离子电池正极材料研究进展[J]. 物理化学学报, 2017, 33(1): 211-241.
[7] 李宛飞,刘美男,王健,张跃钢. 化学改性碳在锂硫电池中的研究进展[J]. 物理化学学报, 2017, 33(1): 165-182.
[8] 缪圣义,王显福,晏成林. 自卷曲技术在微型储能器件上的应用[J]. 物理化学学报, 2017, 33(1): 18-27.
[9] 宋维鑫,侯红帅,纪效波. 磷酸钒钠Na3V2(PO4)3电化学储能研究进展[J]. 物理化学学报, 2017, 33(1): 103-129.
[10] 黄威,邬春阳,曾跃武,金传洪,张泽. P2型钠离子电池正极材料Na0.66Mn0.675Ni0.1625Co0.1625O2的表面重构及其演变的电子显微表征[J]. 物理化学学报, 2016, 32(6): 1489-1494.
[11] 李婷,龙志辉,张道洪. Fe2O3/rGO纳米复合物的制备及其储锂和储钠性能[J]. 物理化学学报, 2016, 32(2): 573-580.
[12] 梁家旭,肖志昌,智林杰. 石墨烯化聚合物:一种兼具电子和离子传输通道的三维富碳高分子能源材料[J]. 物理化学学报, 2016, 32(10): 2390-2398.
[13] 陈程成,张宁,刘永畅,王一菁,陈军. Na2Ti3O7纳米片原位制备与钠离子电池负极材料应用[J]. 物理化学学报, 2016, 32(1): 349-355.
[14] 许婧, 杨德志, 廖小珍, 何雨石, 马紫峰. 还原氧化石墨烯/TiO2复合材料在钠离子电池中的电化学性能[J]. 物理化学学报, 2015, 31(5): 913-919.
[15] 李庆洲, 李玉惠, 李亚娟, 刘又年. 石墨烯/硫复合正极材料的一步水热法制备与电化学性能[J]. 物理化学学报, 2014, 30(8): 1474-1480.