Please wait a minute...
物理化学学报  2016, Vol. 32 Issue (7): 1556-1592    DOI: 10.3866/PKU.WHXB201604291
综述     
水电解制氢非贵金属催化剂的研究进展
常进法1,2, 肖瑶1,2, 罗兆艳1,2, 葛君杰1,2, 刘长鹏2, 邢巍1,2
1 中国科学院大学, 中国科学院长春应用化学研究所, 电分析化学国家重点实验室, 长春 130022;
2 中国科学院长春应用化学研究所先进化学电源实验室, 吉林省低碳化学电源重点实验室, 长春 130022
Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production
CHANG Jin-Fa1,2, XIAO Yao1,2, LUO Zhao-Yan1,2, GE Jun-Jie1,2, LIU Chang-Peng2, XING Wei1,2
1 State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022, P. R. China;
2 Laboratory of Advanced Power Sources, Jilin Province Key Laboratory of Low Carbon Chemical Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
 全文: PDF(71024 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

氢能作为零碳排放能源是被公认的最清洁能源之一,如何有效可持续地产氢是未来人类步入氢能经济首先要解决的问题。电解水技术基于电化学分解水的原理,利用可再生电能或太阳能驱动水分解为氢气和氧气,被认为是最有前途和可持续性的产氢途径。然而,无论是光解水还是电解水,均需要高活性、高稳定性的非贵金属氢析出和氧析出催化剂以使水电解反应经济节能。本文介绍了我们研究所近三年在水电解方面的研究进展,其中着重介绍了:(i) 氢析出催化剂,包括利用低温磷化过渡金属(氢)氧化物的方法制备过渡金属磷化物,同时过渡金属硫化物、硒化物以及碳化物等均被成功合成并被应用为有效的阴极析氢催化剂;(ii)氧析出催化剂,主要包括金属磷化物、硫化物、氧化物/氢氧化物等;(iii) 双功能催化剂,主要包括过渡金属磷化物、硒化物、硫化物等。最后,总结展望了发展水电解非贵金属催化剂所面临的挑战与未来发展方向。

关键词: 水电解氢能非贵金属催化剂氢析出反应氧析出反应    
Abstract:

Because of its zero-carbon emission energy, hydrogen energy is considered the cleanest energy. The greatest challenge is to develop a cost-effective strategy for hydrogen generation. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion are promising pathways for sustainable hydrogen production. All of these techniques require highly active noble metal-free hydrogen and oxygen evolution catalysts to make the water splitting process energy efficient and economical. In this review, we highlight recent research efforts toward synthesis and performance optimization of noble metal-free electrocatalysts in our institute over the last 3 years. We focus on (1) hydrogen evolution catalysts, including transition metal phosphide, sulfides, selenides, and carbides; (2) oxygen evolution catalysts, including transition metal phosphide, sulfide, and oxide/hydroxides; and (3) bifunctional catalysts, mainly comprising transition metal phosphides, selenides, sulfides, and so on. Finally, we summarize the challenges and prospective for future development of non-noble metal catalysts for water electrolysis.

Key words: Water electrolysis    Hydrogen energy    Non-noble catalyst    Hydrogen evolution reaction    Oxygen evolution reaction
收稿日期: 2016-03-21 出版日期: 2016-04-29
中图分类号:  O646  
基金资助:

国家自然科学基金(21373199,21433003),中国科学院战略重点研究先导项目(XDA09030104),吉林省科技发展项目(20130206068GX,20140203012SF,20160622037JC)及外国专家聘用项目(WQ20122200077)资助

通讯作者: 邢巍, 刘长鹏     E-mail: xingwei@ciac.ac.cn;liuchp@ciac.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
常进法
肖瑶
罗兆艳
葛君杰
刘长鹏
邢巍

引用本文:

常进法, 肖瑶, 罗兆艳, 葛君杰, 刘长鹏, 邢巍. 水电解制氢非贵金属催化剂的研究进展[J]. 物理化学学报, 2016, 32(7): 1556-1592.

CHANG Jin-Fa, XIAO Yao, LUO Zhao-Yan, GE Jun-Jie, LIU Chang-Peng, XING Wei. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production. Acta Phys. -Chim. Sin., 2016, 32(7): 1556-1592.

链接本文:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/10.3866/PKU.WHXB201604291        http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/Y2016/V32/I7/1556

(1) Wang, M.; Wang, Z.; Gong, X.; Guo, Z. Renew. Sust. Energy Rev. 2014, 29, 573. doi: 10.1016/S1364-0321(99)00011-8
(2) Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148. doi: 10.1039/c4cs00448e
(3) Trancik, J. E. Nature 2014, 507 (7492), 300. doi: 10.1038/507300a
(4) Mallouk, T. E. Nat. Chem. 2013, 5 (5), 362. doi: 10.1038/nchem.1634
(5) Kreuter, W.; Hofmann, H. Int. J. Hydrog. Energy 1998, 23, 661. doi: 10.1016/S0360-3199(97)00109-2
(6) Leroy, R. Int. J. Hydrog. Energy 1983, 8, 401. doi: 10.1016/0360-3199(83)90162-3
(7) Lu, P.W. T.; Srinivasan, S. J. Appl. Electrochem. 1979, 9, 269. doi: 10.1007/BF01112480
(8) Spacil, H. S.; Tedmon, C. S. J. Electrochem. Soc. 1969, 116, 1618. doi: 10.1149/1.2411642
(9) Zeng, K.; Zhang, D. Prog. Energ. Combust. Sci. 2010, 36, 307. doi: 10.1016/j.pecs.2009.11.002
(10) Bockris, J. O. M.; Potter, E. C. J. Electrochem. Soc. 1952, 99, 169. doi: 10.1149/1.2779692
(11) Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. J. Electrochem. Soc. 2005, 152 (3), J23. doi: 10.1149/1.1856988
(12) Luo, J.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Science 2014, 345 (6204), 1593. doi: 10.1126/science.1258307
(13) Oyama, S. T.; Gott, T.; Zhao, H.; Lee, Y. K. Catal. Today 2009, 143 (1-2), 94. doi: 10.1016/j.cattod.2008.09.019
(14) Liu, P.; Rodriguez, J. A. J. Am. Chem. Soc. 2005, 127, 14871. doi: 10.1021/ja0540019
(15) Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. J. Am. Chem. Soc. 2013, 135 (25), 9267. doi: 10.1021/ja403440e
(16) Feng, L.; Vrubel, H.; Bensimon, M.; Hu, X. Phys. Chem. Chem. Phys. 2014, 16 (13), 5917. doi: 10.1039/c4cp00482e
(17) Pu, Z.; Liu, Q.; Tang, C.; Asiri, A. M.; Sun, X. Nanoscale 2014, 16 (13), 5917. doi: 10.1039/c4cp00482e
(18) Jiang, P.; Liu, Q.; Sun, X. Nanoscale 2014, 6 (22), 13440. doi: 10.1039/c4nr04866k
(19) Zhang, W. G.; Shang, Y. P.; Liu, L. N.; Yao, S.W.; Wang, H. Z. Acta Phys. -Chim. Sin. 2011, 27 (4), 900. [张卫国, 尚云鹏, 刘丽娜, 姚素薇, 王宏智. 物理化学学报, 2011, 27 (4), 900.] doi: 10.3866/PKU.WHXB20110344
(20) Duan, Q. H.; Wang, S. L.; Wang, L. P. Acta Phys. -Chim. Sin. 2013, 29 (1), 123. [段钱花, 王森林, 王丽品. 物理化学学报, 2013, 29 (1), 123.] doi: 10.3866/PKU.WHXB201210095
(21) Tang, C.; Asiri, A. M.; Luo, Y.; Sun, X. ChemNanoMat 2015, 1 (8), 558. doi: 10.1002/cnma.201500163
(22) Popczun, E. J.; Read, C. G.; Roske, C.W.; Lewis, N. S.; Schaak, R. E. Angew. Chem. Int. Edit. 2014, 126 (21), 5531. doi: 10.1002/ange.201402646
(23) Liu, Q.; Tian, J.; Cui, W.; Jiang, P.; Cheng, N.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Edit. 2014, 53 (26), 6710. doi: 10.1002/anie.201404161
(24) Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. J. Am. Chem. Soc. 2014, 136 (21), 7587. doi: 10.1021/ja503372r
(25) Li, Q.; Xing, Z.; Asiri, A. M.; Jiang, P.; Sun, X. Int. J. Hydrog. Energy 2014, 39 (30), 16806. doi: 10.1016/j.ijhydene.2014.08.099
(26) Pu, Z.; Liu, Q.; Jiang, P.; Asiri, A. M.; Obaid, A. Y.; Sun, X. Chem. Mater. 2014, 26 (15), 4326. doi: 10.1021/cm501273s
(27) Gu, S.; Du, H.; Asiri, A. M.; Sun, X.; Li, C. M. Phys. Chem. Chem. Phys. 2014, 16 (32), 16909. doi: 10.1039/c4cp02613f
(28) Jiang, P.; Liu, Q.; Ge, C.; Cui, W.; Pu, Z.; Asiri, A. M.; Sun, X. J. Mater. Chem. A 2014, 2 (35), 14634. doi: 10.1039/c4ta03261f
(29) Du, H.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X.; Li, C. M. J. Mater. Chem. A 2014, 2 (36), 14812. doi: 10.1039/c4ta02368d
(30) Huang, Z.; Chen, Z.; Chen, Z.; Lv, C.; Humphrey, M. G.; Zhang, C. Nano Energy 2014, 9, 373. doi: 10.1016/j.nanoen.2014.08.013
(31) Lu, A.; Chen, Y.; Li, H.; Dowd, A.; Cortie, M. B.; Xie, Q.; Guo, H.; Qi, Q.; Peng, D. L. Int. J. Hydrog. Energy 2014, 39 (33), 18919. doi: 10.1016/j.ijhydene.2014.09.104
(32) Saadi, F. H.; Carim, A. I.; Verlage, E.; Hemminger, J. C.; Lewis, N. S.; Soriaga, M. P. J. Phys. Chem. C 2014, 118 (50), 29294. doi: 10.1021/jp5054452
(33) Xu, Y.; Wu, R.; Zhang, J.; Shi, Y.; Zhang, B. Chem. Commun. 2013, 49 (59), 6656. doi: 10.1039/c3cc43107j
(34) Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. ACS Nano 2014, 8, 11101. doi: 10.1021/nn5048553
(35) Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Edit. 2014, 53 (47), 12855. doi: 10.1002/anie.201406848
(36) Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.; Luo, Y. ACS Catal. 2014, 4 (11), 4065. doi: 10.1021/cs501106g
(37) Tian, J.; Liu, Q.; Liang, Y.; Xing, Z.; Asiri, A. M.; Sun, X. ACS Appl. Mater. Interfaces 2014, 6 (23), 20579. doi: 10.1021/am5064684
(38) Tian, J.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X. Angew. Chem. Int. Edit. 2014, 53 (36), 9577. doi: 10.1002/anie.201403842
(39) Morales-Guio, C. G.; Stern, L. A.; Hu, X. Chem. Soc. Rev. 2014, 43 (18), 6555. doi: 10.1039/c3cs60468c
(40) Xiao, P.; Sk, M. A.; Thia, L.; Ge, X.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Energy Environ. Sci. 2014, 7 (8), 2624. doi: 10.1039/c4ee00957f
(41) Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. Adv. Mater. 2014, 26 (32), 5702. doi: 10.1002/adma.201401692
(42) Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Alamry, K. A.; Sun, X. Appl. Catal. B: Environ. 2015, 164, 144. doi: 10.1016/j.apcatb.2014.09.016
(43) Kibsgaard, J.; Jaramillo, T. F. Angew. Chem. Int. Edit. 2014, 53 (52), 14433. doi: 10.1002/anie.201408222
(44) McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Biacchi, A. J.; Lewis, N. S.; Schaak, R. E. Chem. Mater. 2014, 26 (16), 4826. doi: 10.1021/cm502035s
(45) McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Read, C. G.; Lewis, N. S.; Schaak, R. E. Chem. Commun. 2014, 50 (75), 11026. doi: 10.1039/c4cc04709e
(46) Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X. ACS Appl. Mater. Interfaces 2014, 6 (24), 21874. doi: 10.1021/am5060178
(47) Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X. ACS Catal. 2015, 5 (1), 145. doi: 10.1021/cs5014943
(48) Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Angew. Chem. Int. Edit. 2012, 51 (25), 6131. doi: 10.1002/anie.201200699
(49) Shi, J.; Pu, Z.; Liu, Q.; Asiri, A. M.; Hu, J.; Sun, X. Electrochim. Acta 2015, 154, 345. doi: 10.1016/j.electacta.2014.12.096
(50) Xing, Z.; Li, Q.; Wang, D.; Yang, X.; Sun, X. Electrochim. Acta 2016, 191, 841. doi: 10.1016/j.electacta.2015.12.174
(51) Levy, R. B.; Boudart, M. Science 1973, 181, 547. doi: 10.1126/science.181.4099.547
(52) Bennett, L. H.; Cuthill, J. R.; Mcalister, A. J.; Erickson, N. E. Science 1974, 184, 563. doi: 10.1126/science.184.4136.563
(53) Vrubel, H.; Hu, X. Angew. Chem. Int. Edit. 2012, 51 (51), 12703. doi: 10.1002/ange.201207111
(54) Wan, C.; Regmi, Y. N.; Leonard, B. M. Angew. Chem. Int. Edit. 2014, 53 (25), 6407. doi: 10.1002/ange.201402998
(55) Chen, W. F.; Iyer, S.; Iyer, S.; Sasaki, K.; Wang, C. H.; Zhu, Y.; Muckerman, J. T.; Fujita, E. Energy. Environ. Sci. 2013, 6 (6), 1818. doi: 10.1039/c3ee40596f
(56) Cui, W.; Cheng, N.; Liu, Q.; Ge, C.; Asiri, A. M.; Sun, X. ACS Catal. 2014, 4 (8), 2658. doi: 10.1021/cs5005294
(57) Ge, C.; Jiang, P.; Cui, W.; Pu, Z.; Xing, Z.; Asiri, A. M.; Obaid, A. Y.; Sun, X.; Tian, J. Electrochim. Acta 2014, 134, 182. doi: 10.1016/j.electacta.2014.04.113
(58) Sheng, J. F.; Ma, C. A.; Zhang, C.; Li, G. H. Acta Phys. -Chim. Sin. 2007, 23 (2), 181. [盛江峰, 马淳安, 张诚, 李国华.物理化学学报, 2007, 23 (2), 181.] doi: 10.3866/PKU.WHXB20070209
(59) Xiao, X. F.; Liu, R. F.; Zhu, Z. S. Acta Phys. -Chim. Sin. 1999, 15 (8), 742. [肖秀峰, 刘榕芳, 朱则善. 物理化学学报, 1999, 15 (8), 742.] doi: 10.3866/PKU.WHXB19990814
(60) Wirth, S.; Harnisch, F.; Weinmann, M.; Schröder, U. Appl. Catal. B: Environ. 2012, 126, 225. doi: 10.1016/j.apcatb.2012.07.023
(61) Yan, Y.; Xia, B.; Xu, Z.; Wang, X. ACS Catal. 2014, 4 (6), 1693. doi: 10.1021/cs500070x
(62) Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. J. Am. Chem. Soc. 2005, 127, 5308. doi: 10.1021/ja0504690
(63) Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100. doi: 10.1126/science.1141483
(64) Pu, Z.; Liu, Q.; Asiri, A. M.; Luo, Y.; Sun, X.; He, Y. Electrochim. Acta 2015, 168, 133. doi: 10.1016/j.electacta.2015.04.011
(65) Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G.; Markovic, N. M. Nat. Mater. 2016, 15 (2), 197. doi: 10.1038/NMAT4481
(66) Cui, W.; Ge, C.; Xing, Z.; Asiri, A. M.; Sun, X. Electrochim. Acta 2014, 137, 504. doi: 10.1016/j.electacta.2014.06.035
(67) Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nat. Mater. 2013, 12 (9), 850. doi: 10.1038/NMAT3700
(68) Yang, J.; Voiry, D.; Ahn, S. J.; Kang, D.; Kim, A. Y.; Chhowalla, M.; Shin, H. S. Angew. Chem. Int. Edit. 2013, 52 (51), 13751. doi: 10.1002/anie.201307475
(69) Pu, Z.; Liu, Q.; Asiri, A. M.; Obaid, A. Y.; Sun, X. Electrochim. Acta 2014, 134, 8. doi: 10.1016/j.electacta.2014.04.092
(70) Cao, Y. L.; Wang, F.; Liu, J. J.; Wang, J. J.; Zhang, L. H.; Tan, S. Y. Acta Phys. -Chim. Sin. 2009, 25 (10), 1979. [曹寅亮, 王峰, 刘景军, 王建军, 张良虎, 覃事永. 物理化学学报, 2009, 25 (10), 1979.] doi: 10.3866/PKU.WHXB20091017
(71) Di Giovanni, C.; Wang, W. A.; Nowak, S.; Grenèche, J. M.; Lecoq, H.; Mouton, L.; Giraud, M.; Tard, C. ACS Catal. 2014, 4 (2), 681. doi: 10.1021/cs4011698
(72) Kong, D.; Cha, J. J.; Wang, H.; Lee, H. R.; Cui, Y. Energy Environ. Sci. 2013, 6 (12), 3553. doi: 10.1039/c3ee42413h
(73) Tang, C.; Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X. Electrochim. Acta 2015, 153, 508. doi: 10.1016/j.electacta.2014.12.043
(74) Tang, C.; Pu, Z.; Liu, Q.; Asiri, A. M.; Luo, Y.; Sun, X. Int. J. Hydrog. Energy 2015, 40 (14), 4727. doi: 10.1016/j.ijhydene.2015.02.038
(75) Faber, M. S.; Lukowski, M. A.; Ding, Q.; Kaiser, N. S.; Jin, S. J. Phys. Chem. C 2014, 118 (37), 21347. doi: 10.1021/jp5054452
(76) Gao, M. R.; Lin, Z. Y.; Zhuang, T. T.; Jiang, J.; Xu, Y. F.; Zheng, Y. R.; Yu, S. H. J. Mater. Chem. 2012, 22 (27), 13662. doi: 10.1039/C2JM31916K
(77) Liu, Q.; Shi, J.; Hu, J.; Asiri, A. M.; Luo, Y.; Sun, X. ACS Appl. Mater. Interfaces 2015, 7 (7), 3877. doi: 10.1021/am509185x
(78) Liu, T.; Liu, Q.; Asiri, A. M.; Luo, Y.; Sun, X. Chem. Commun. 2015, 51 (93), 16683. doi: 10.1039/c5cc06892d
(79) Tang, C.; Cheng, N.; Pu, Z.; Xing, W.; Sun, X. Angew. Chem. Int. Edit. 2015, 127 (32), 9483. doi: 10.1002/anie.201503407
(80) Liu, T.; Asiri, A. M.; Sun, X. Nanoscale 2016, 8 (7), 3911. doi: 10.1039/c5nr07170d
(81) Damjanovic, A.; Dey, A.; Bockris, J. O. M. J. Electrochem. Soc. 1966, 113 (7), 739. doi: 10.1149/1.2424104
(82) Miles, M. H.; Thomason, M. A. J. Electrochem. Soc. 1976, 123 (10), 1459. doi: 10.1149/1.2132820
(83) Lodi, G.; Sivieri, E.; Battisti, A.; Trasatti, S. J. Appl. Electrochem. 1978, 8 (2), 135. doi: 10.1007/BF00617671
(84) Song, S.; Zhang, H.; Ma, X.; Shao, Z.; Baker, R. T.; Yi, B. Int. J. Hydrog. Energy 2008, 33 (19), 4955. doi: 10.1016/j.ijhydene.2008.06.039
(85) Slavcheva, E.; Radev, I.; Bliznakov, S.; Topalov, G.; Andreev, P.; Budevski, E. Electrochim. Acta 2007, 52 (12), 3889. doi: 10.1016/j.electacta.2006.11.005
(86) Hackwood, S.; Schiavone, L. M.; Dautremont-Smith, W. C.; Beni, G. J. Electrochem. Soc. 1981, 128 (12), 2569. doi: 10.1149/1.2127293
(87) Ardizzone, S.; Carugati, A.; Trasatti, S. J. Electroanal. Chem. 1981, 126 (1), 287. doi: 10.1016/S0022-0728(81)80437-8
(88) Kötz, R.; Neff, H.; Stucki, S. J. Electrochem. Soc. 1984, 131 (1), 72. doi: 10.1149/1.2115548
(89) Kötz, R.; Stucki, S. Electrochim. Acta 1986, 31 (10), 1311. doi: 10.1016/0013-4686(86)80153-0
(90) Kötz, R.; Stucki, S. J. Electrochem. Soc. 1985, 132 (1), 103. doi: 10.1149/1.2113735
(91) Cheng, J.; Zhang, H.; Chen, G.; Zhang, Y. Electrochim. Acta 2009, 54 (26), 6250. doi: 10.1016/j.electacta.2009.05.090
(92) Marshall, A.; Børresen, B.; Hagen, G.; Tsypkin, M.; Tunold, R. Electrochim. Acta 2006, 51 (15), 3161. doi: 10.1016/j.electacta.2005.09.004
(93) Xu, J.; Liu, G.; Li, J.; Wang, X. Electrochim. Acta 2012, 59, 105. doi: 10.1016/j.electacta.2011.10.044
(94) Hutchings, R.; Müller, K.; Kötz, R.; Stucki, S. J. Mater. Sci. 1984, 19 (12), 3987. doi: 10.1007/BF00980762
(95) Yeo, R. S.; Orehotsky, J.; Visscher, W.; Srinivasan, S. J. Electrochem. Soc. 1981, 128 (9), 1900. doi: 10.1149/1.2127761
(96) Corona-Guinto, J. L.; Cardeño-García, L.; Martínez-Casillas, D. C.; Sandoval-Pineda, J. M.; Tamayo-Meza, P.; Silva-Casarin, R.; González-Huerta, R. G. Int. J. Hydrog. Energy 2013, 38 (28), 12667. doi: 10.1016/j.ijhydene.2012.12.071
(97) Ardizzone, S.; Bianchi, C. L.; Cappelletti, G.; Ionita, M.; Minguzzi, A.; Rondinini, S.; Vertova, A. J. Electroanal. Chem. 2006, 589 (1), 160. doi: 10.1016/j.jelechem.2006.02.004
(98) Kadakia, K.; Datta, M. K.; Velikokhatnyi, O. I.; Jampani, P.; Park, S. K.; Saha, P.; Poston, J. A.; Manivannan, A.; Kumta, P. N. Int. J. Hydrog. Energy 2012, 37 (4), 3001. doi: 10.1016/j.ijhydene.2011.11.055
(99) Datta, M. K.; Kadakia, K.; Velikokhatnyi, O. I.; Jampani, P. H.; Chung, S. J.; Poston, J. A.; Manivannan, A.; Kumta, P. N. J. Mater. Chem. A 2013, 1 (12), 4026. doi: 10.1039/c3ta01458d
(100) Zhao, C.; E, Y.; Fan, L. Microchimica Acta 2012, 178 (1), 107. doi: 10.1007/s00604-012-0818-1
(101) Zhao, C.; Yu, H.; Li, Y.; Li, X.; Ding, L.; Fan, L. J. Electroanal. Chem. 2013, 688, 269. doi: 10.1016/j.jelechem.2012.08.032
(102) Miles, M. H.; Huang, Y. H. J. Electrochem. Soc. 1978, 125, 1931. doi: 10.1149/1.2131330
(103) Damjanovic, A.; Dey, A.; Bockris, J. O. M. J. Electrochem. Soc. 1966, 113, 739. doi: 10.1149/1.2424104
(104) Miles, M. H.; Kissel, G.; Lu, P.W. T.; Srinivasan, S. J. Electrochem. Soc. 1976, 123, 332. doi: 10.1149/1.2132820
(105) Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X. J. Appl. Electrochem. 2014, 44 (11), 1165. doi: 10.1007/s10800-014-0743-6
(106) Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.; He, Y. Int. J. Hydrog. Energy 2015, 40 (39), 13258. doi: 10.1016/j.ijhydene.2015.07.165
(107) Liu, T.; Liang, Y.; Liu, Q.; Sun, X.; He, Y.; Asiri, A. M. Electrochem. Commun. 2015, 60, 92. doi: 10.1016/j.elecom.2015.08.011
(108) Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Nat. Mater. 2012, 11 (6), 550. doi: 10.1038/NMAT3313
(109) Liu, Q.; Asiri, A. M.; Sun, X. Electrochem. Commun. 2014, 49, 21. doi: 10.1016/j.elecom.2014.09.021
(110) Chang, J.; Xiao, Y.; Xiao, M.; Ge, J.; Liu, C.; Xing, W. ACS Catal. 2015, 5, 6874. doi: 10.1021/acscatal.5b02076
(111) Xiao, Y.; Feng, L.; Hu, C.; Fateev, V.; Liu, C.; Xing, W. RSC Adv. 2015, 5 (76), 61900. doi: 10.1039/c5ra08848h
(112) Cheng, N.; Xue, Y.; Liu, Q.; Tian, J.; Zhang, L.; Asiri, A. M.; Sun, X. Electrochim. Acta 2015, 163, 102. doi: 10.1016/j.electacta.2015.02.099
(113) Bao, J. Z.; Wang, S. L. Acta Phys. -Chim. Sin. 2011, 27 (12), 2849. [鲍晋珍, 王森林. 物理化学学报, 2011, 27 (12), 2849.] doi: 10.3866/PKU.WHXB20112849
(114) Wang, S. L.; Wang, L. P.; Zhang, Z. H. Acta Phys. -Chim. Sin. 2013, 29 (5), 981. [王森林, 王丽品, 张振洪. 物理化学学报, 2013, 29 (5), 981.] doi: 10.3866/PKU.WHXB201303071
(115) Tian, J.; Liu, Q.; Asiri, A. M.; Alamry, K. A.; Sun, X. ChemSusChem 2014, 7 (8), 2125. doi: 10.1002/cssc.201402118
(116) Jin, H.; Wang, J.; Su, D.; Wei, Z.; Pang, Z.; Wang, Y. J. Am. Chem. Soc. 2015, 137 (7), 2688. doi: 10.1021/ja5127165
(117) Cobo, S.; Heidkamp, J.; Jacques, P. A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S.; Fontecave, M.; Artero, V. Nat. Mater. 2012, 11 (9), 802. doi: 10.1038/NMAT3313
(118) He, C.; Wu, X.; He, Z. J. Phys. Chem. C 2014, 118 (9), 4578. doi: 10.1021/jp408153b
(119) Yang, Y.; Fei, H.; Ruan, G.; Tour, J. M. Adv. Mater. 2015, 27 (20), 3175. doi: 10.1002/adma.201500894
(120) Tian, J.; Cheng, N.; Liu, Q.; Sun, X.; He, Y.; Asiri, A. M. J. Mater. Chem. A 2015, 3 (40), 20056. doi: 10.1039/C5TA04723D
(121) Ma, J.; Jiang, X.; Jiang, L. C. Acta Phys. -Chim. Sin. 1996, 12 (1), 22. [马洁, 蒋雄, 江琳才. 物理化学学报, 1996, 12 (1), 22.] doi: 10.3866/PKU.WHXB19960106
(122) Wang, S. L.; Zhang, Y. Acta Phys. -Chim. Sin. 2011, 27 (6), 1417. [王森林, 张艺. 物理化学学报, 2011, 27 (6), 1417.] doi: 10.3866/PKU.WHXB20110510
(123) Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. Am. Chem. Soc. 2013, 135 (23), 8452. doi: 10.1021/ja4027715
(124) Song, F.; Hu, X. Nat. Commun. 2014, 5, 4477. doi: 10.1038/ncomms5477
(125) Liang, H.; Meng, F.; Caban-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Nano Lett. 2015, 15 (2), 1421. doi: 10.1021/nl504872s
(126) Liang, H.; Li, L.; Meng, F.; Dang, L.; Zhuo, J.; Forticaux, A.; Wang, Z.; Jin, S. Chem. Mater. 2015, 27 (16), 5702. doi: 10.1021/acs.chemmater.5b02177
(127) Song, F.; Hu, X. J. Am. Chem. Soc. 2014, 136 (47), 16481. doi: 10.1021/ja5096733
(128) Fan, G.; Li, F.; Evans, D. G.; Duan, X. Chem. Soc. Rev. 2014, 43 (20), 7040. doi: 10.1039/c4cs00160e
(129) Stern, L. A.; Feng, L.; Song, F.; Hu, X. Energy Environ. Sci. 2015, 8 (8), 2347. doi: 10.1039/c5ee01155h
(130) Liu, X.; Zheng, H.; Sun, Z.; Han, A.; Du, P. ACS Catal. 2015, 5 (3), 1530. doi: 10.1021/cs501480s
(131) Jiang, N.; You, B.; Sheng, M.; Sun, Y. Angew. Chem. Int. Edit. 2015, 54 (21), 6251. doi: 10. 1002/anie.201501616
(132) Ledendecker, M.; Krick Calderon, S.; Papp, C.; Steinruck, H. P.; Antonietti, M.; Shalom, M. Angew. Chem. Int. Edit. 2015, 127 (42), 12538. doi: 10.1002/anie.201502438
(133) Chang, J.; Liang, L.; Li, C.; Wang, M.; Ge, J.; Liu, C.; Xing, W. Green Chem. 2016, 18, 2287. doi: 1 0.1039/c5gc 02899j.
(134) Shi, J.; Hu, J.; Luo, Y.; Sun, X.; Asiri, A. M. Catal. Sci. Technol. 2015, 5 (11), 4954. doi: 10.1039/c5cy01121c
(135) Fang, W.; Liu, D.; Lu, Q.; Sun, X.; Asiri, A. M. Electrochem. Commun. 2016, 63, 60. doi: 10.1016/j.elecom.2015.10.010
(136) Liu, D.; Lu, Q.; Luo, Y.; Sun, X.; Asiri, A. M. Nanoscale 2015, 7, 15122. doi: 10.1039/c5nr04064g
(137) McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2013, 135 (45), 16977. doi: 10.1021/ja407115p
(138) McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137 (13), 4347. doi: 10.1021/ja510442p

[1] 陈驰, 张雪, 周志有, 张新胜, 孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[2] 杨昆, 姚淇露, 卢章辉, 康志兵, 陈祥树. 快速合成廉价CuMo纳米粒子高效催化氨硼烷水解产氢[J]. 物理化学学报, 2017, 33(5): 993-1000.
[3] 王俊, 魏子栋. 非贵金属氧还原催化剂的研究进展[J]. 物理化学学报, 2017, 33(5): 886-902.
[4] 徐莉, 潘国顺, 梁晓璐, 罗桂海, 邹春莉, 罗海梅. Fe-N/C-TsOH催化剂应用碱性介质催化氧还原的电催化活性[J]. 物理化学学报, 2014, 30(2): 318-324.
[5] 林培宾, 杨俞, 陈威, 高寒阳, 陈小平, 袁坚, 上官文峰. NiS-PdS/CdS光催化剂的水热法合成及其可见光分解水产氢性能[J]. 物理化学学报, 2013, 29(06): 1313-1318.
[6] 李赏, 王家堂, 陈锐鑫, 赵伟, 钱柳, 潘牧. 热处理碳载Fe-三聚氰胺及Fe-g-C3N4催化剂的氧还原催化性能[J]. 物理化学学报, 2013, 29(04): 792-798.
[7] 郑华荣, 张金水, 王心晨, 付贤智. 二氨基马来腈共聚合改性氮化碳光催化剂[J]. 物理化学学报, 2012, 28(10): 2336-2342.
[8] 樊玉欠, 邵海波, 王建明, 刘倞, 张鉴清, 曹楚南. 非贵金属催化的碱性硫离子燃料电池放电特性[J]. 物理化学学报, 2012, 28(01): 90-94.
[9] 沈培康;汪圣龙;胡智怡;李永亮;曾蓉;黄岳强. 电解醇制氢[J]. 物理化学学报, 2007, 23(01): 107-110.
[10] 王凡;卫庆硕;张玉玲;吴凯;谢有畅. 贫水电解质体系制备多孔阳极氧化铝模板的研究[J]. 物理化学学报, 2004, 20(09): 1134-1137.
[11] 闫卫东,徐奕瑾,韩世钧. 拟静态沸点计法测定非水电解质溶液的渗透系数[J]. 物理化学学报, 1995, 11(05): 454-459.
[12] 朱龙章, 刘淑兰, 覃奇贤, 郭鹤桐. Ni-WC复合电极在弱酸性介质中的析氢催化性能[J]. 物理化学学报, 1994, 10(11): 1055-1058.