物理化学学报 >> 2016, Vol. 32 >> Issue (6): 1314-1329.doi: 10.3866/PKU.WHXB201605035

综述 上一篇    下一篇

二维碳石墨炔的结构及其在能源领域的应用

黄长水1,*(),李玉良2,*()   

  1. 1 中国科学院青岛生物能源与过程研究所,山东青岛266101
    2 中国科学院化学研究所,北京100190
  • 收稿日期:2016-02-26 发布日期:2016-06-03
  • 通讯作者: 黄长水,李玉良 E-mail:huangcs@qibebt.ac.cn;ylli@iccas.ac.cn
  • 作者简介:黄长水,中国科学院青岛生物能源与过程研究所研究员,中国科学院“百人计划”。研究方向是基于二维平面碳的光、电功能性分子材料制备,及其在能源存储和转化方向的应用和相关器件设计。|李玉良,中国科学院化学研究所研究员,博士生导师,中国科学院院士。研究领域为碳基、富碳基材料设计、聚集态结构、异质结构和材料。主要聚焦在发展具有光电活性的碳基和富碳分子基材料自组装方法学和自组织生长。
  • 基金资助:
    国家重点基础研究发展规划项目(973)(2012CB932901);中国科学院“百人计划”项目

Structure of 2D Graphdiyne and Its Application in Energy Fields

Chang-Shui HUANG1,*(),Yu-Liang LI2,*()   

  1. 1 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101,Shandong Province, P. R. China
    2 Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
  • Received:2016-02-26 Published:2016-06-03
  • Contact: Chang-Shui HUANG,Yu-Liang LI E-mail:huangcs@qibebt.ac.cn;ylli@iccas.ac.cn
  • Supported by:
    the National Basic Research 973 Program of China(2012CB932901);the “100 Talents” Program of the Chinese

摘要:

从二维碳材料石墨炔(GDY)的分子和电子结构出发,重点论述石墨炔在能源存储和转换两个领域的应用,包括最新的理论和实验进展。石墨炔独特的三维孔隙结构,使得石墨炔在锂存储和氢气存储应用中具备天然的优势,既可以用作锂离子相关的储能器件,包括锂离子电池、锂离子电容器等;也可作为储氢材料,用于燃料电池等。通过掺杂的方法,还能进一步提高石墨炔储锂和储氢的性能。由于sp炔键和sp2苯环的存在,使石墨炔具有多重共轭的电子结构,在具备狄拉克锥的同时,其带隙也可通过多种途径调控,使得石墨炔不仅可以作为非金属高活性催化剂替代贵金属在光催化等方面应用,还可以在太阳能电池的空穴传输层和电子传输层方面获得应用,展现了石墨炔在能源方面独特的应用价值。我们将从理论预测和实验研究两方面介绍该领域目前的研究现状和发展趋势。

关键词: 石墨炔, 储锂, 储氢, 催化, 太阳能电池

Abstract:

This paper focuses on application of graphdiyne (GDY) in both energy storage and conversion fields, including the most recent theoretical and experimental progress. The unique three-dimensional pore structure formed by stacking of the GDY layer, make it possess the natural advantage which can be applied to lithium storage and hydrogen storage. Because of its lithium storage ability, GDY can be used in energy storage devices, such as lithium ion batteries and lithium ion capacitors. While with the hydrogen storage property, GDY can be used as a hydrogen storage material in fuel cells. By doping method, the performance of GDY for lithium and hydrogen storage can be further improved. Owing to acetylene units composed of sp hybridized carbon atoms and benzene rings composed of sp2 hybridized carbon atoms, GDY possesses multiple conjugated electronic structures. Thus, its band gap can be regulated through many ways accompanied with existence of Dirac cones. This property means that GDY can not only be used as a high-activity non-metal catalyst in place of noble metal catalysts in photocatalysis, but it also plays a promotional role in the hole transport layer and electron transport layer of solar cells. All of the reported results including theoretical and experimental data reviewed here, show the great potential of GDY in energy field applications.

Key words: Graphdiyne, Lithium storage, Hydrogen storage, Catalysis, Solar cell

MSC2000: 

  • O647