Please wait a minute...
物理化学学报  2016, Vol. 32 Issue (12): 2841-2870    DOI: 10.3866/PKU.WHXB201611021
综述     
铋系光催化剂的形貌调控与表面改性研究进展
赫荣安1,2,曹少文1,余家国1,*()
1 武汉理工大学材料复合新技术国家重点实验室,武汉430070
2 长沙学院,环境光催化应用技术湖南省重点实验室,长沙410022
Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts
Rong-An HE1,2,Shao-Wen CAO1,Jia-Guo YU1,*()
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
2 Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, P. R. China
 全文: PDF(8642 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

铋系光催化剂是一类重要的可见光光催化剂,但块体铋系化合物的光催化性能并不理想,需进行改性增强。形貌调控和表面改性是增强铋系光催化剂性能的两种有效方法。本文对近年来铋系化合物光催化剂形貌调控和表面改性方面的研究报道进行综述总结,介绍通过超薄纳米片制备、晶面比例调控、分级结构和空心结构构筑、官能团和纳米微粒修饰表面、表面缺陷调控以及表面原位转化形成金属铋和含铋化合物纳米颗粒等方法增强铋系光催化剂性能的研究情况,对各种方法的特点及其在增加光吸收、有效分离和利用光生载流子方面的作用机制进行讨论,并对铋系光催化材料的形貌调控与表面改性的未来发展趋势及所面临的挑战进行分析总结。

关键词: 铋系化合物光催化形貌调控表面改性    
Abstract:

Bi-based semiconductor photocatalysts are important visible-light-driven photocatalysts. However, the photocatalytic performance of bulk bismuth-containing compounds remains unsatisfactory. Many investigations indicate that morphology control and surface modification are effective methods for improving the photocatalytic activity of these compounds. Herein, we review recent advances in this field, including ultrathin nanoplate fabrication, facet ratio control, hierarchical and hollow architecture construction, functional group and quantum-sized nanoparticle modification, surface defect regulation, and in situ formation of metal bismuth and bismuth compounds. The characteristics and advantages of these modification methods are introduced. In addition, mechanisms for improving light absorption, separation, and utilization of excited carriers are discussed. Trends in the development of Bi-based photocatalysts using morphology control and surface modification, as well as the challenges involved, are also analyzed and summarized.

Key words: Bi-based compound    Photocatalysis    Morphology control    Surface modification
收稿日期: 2016-09-16 出版日期: 2016-11-02
中图分类号:  O643  
基金资助: 国家重点基础研究发展规划项目(973)(2013CB632402);国家自然科学基金(51272199,51320105001,51372190,21433007,21407115)
通讯作者: 余家国     E-mail: jiaguoyu@yahoo.com
作者简介: 赫荣安,副教授, 2008年在国防科技大学获得博士学位, 2010年至今,在长沙学院从事科研教学工作,现在武汉理工大学从事博士后研究,主要研究方向:纳米材料、可见光光催化材料|曹少文, 1984年生。2010年在中国科学院上海硅酸盐研究所获得博士学位,随后在南洋理工大学从事博士后研究。2014年起任武汉理工大学材料复合新技术国家重点实验室研究员。主要研究方向为能源光催化材料的设计制备和应用探索|余家国, 1963年生。现为武汉理工大学材料复合新技术国家重点实验室教授、博士生导师、国家杰出青年基金获得者。主要从事半导体光催化材料、光催化分解水产氢、CO2还原、室内空气净化材料等方面的研究工作。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赫荣安
曹少文
余家国

引用本文:

赫荣安,曹少文,余家国. 铋系光催化剂的形貌调控与表面改性研究进展[J]. 物理化学学报, 2016, 32(12): 2841-2870.

Rong-An HE,Shao-Wen CAO,Jia-Guo YU. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts. Acta Phys. -Chim. Sin., 2016, 32(12): 2841-2870.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201611021        http://www.whxb.pku.edu.cn/CN/Y2016/V32/I12/2841

图1  单层Bi2WO6纳米片的(a) TEM图像、HRTEM图像(插图)和(b) AFM图像[46]
图2  光催化材料中几种典型分级结构[60]
图3  几种典型分级结构的铋系光催化材料的SEM图像
MaterialMethodRef.
Bi2S3solvothermal[61, 62]
Bi2O3ambient reaction, precipitation method,hydrothermal[63-65]
(BiO)2CO3reaction with refluxing, hydrothermal[66-71]
BiVO4hydrothermal, solvothermal[72-78]
Bi2WO6hydrothermal, solvothermal[79, 80]
BiPO4microwave-assisted hydrothermal[81, 82]
Bi23P4O44.5hydrothermal[83]
Bi12TiO20microwave-assisted hydrothermal[15]
Bi12TiO20Bi2SiO5PVP-assisted hydrothermal[84]
BiOClsolvothermal, PVA-assisted hydrothermal[85-89]
Bi12Oi17Cl2PVP-assisted hydrothermal[90]
BiOBrsolvothermal, SDS-assisted hydrothermal,PVP-assisted hydrothermal[91-93]
BiOIsolvothermal, microwave-assisted solvothermal[94-96]
Bi4O5I2solvothermal, microwave-assisted solvothermal[97, 98]
表1  具有分级结构铋系半导体的制备方法
图4  PVP辅助的水热法制备的BiOBr的(a)低倍和(b)高倍场发射扫描电镜图像[91]
图5   Bi2WO6的形貌(a,b)、红细胞形貌(a中插图)、RhB光催化降解曲线(c)ln(C0/C)-t曲线(d)[101]
图6  不同pH环境制备的BiVO4分级结构SEM图像[75] pH: (a) 1.7; (b) 4.9; (c) 6.01; (d) 6.26; (e) 6.45; (f) 6.72; (g) 7; (h) 7.38; (i) 7.98
图7  体系的pH值对BiVO4形貌和晶态结构的影响示意图[104]
图8  光在纳米片和纳米颗粒样品中反射情况的示意图[110]
图9  具有空心结构铋系光催化材料的SEM图像
图10  BiOCl样品的FESEM (a,c,e,g)和TEM (b,d,f,h)图像[145]
图11  180 ℃、5 h制备的多孔BiOCl六方柱场的扫描电镜图像[149]
ModifierBi-based materialMethodPerformance compared with un-modifiedRef.
noble metals & compound
PtBi2WOi6chemical reductionenhanced photocatalytic ability for removal of rhodamine 6G (Rh6G)[160]
Pthierarchical Bi2WOi6hydrothermal methodremoval of RhB was significantly enhanced[159]
PtBiVOi4/SiO2Photodeposition hydrothermal methodgreatly increased photocatalytic activity for acetaldehyde[166]
AgBi2WOi6hydrothermal and sonochemical methodswith 1.0% (w) Ag, higher activity than Bi2WOi6[167]
AgBi2WOi6 (001)sonochemical methodenhanced electron-transfer efficiency[168]
AgBiVOi4ramework replacement synthesissignificantly enhanced photocatalytic activity for RhB[169]
AgBi2MoOi6hydrothermal and sonochemical methodsgreatly enhanced photocatalytic activity for RhB[170]
AgBi4Ti3O12sonochemical method1.9 times higher than Ti doped Bi2O3[171]
AgTi doped Bi2O3ramework replacement synthesisgreatly enhance the absorption of visible light but deteriorates the photocatalytic activity[172]
AgBiOBrprecipitation-deposition methodgreatly enhanced photocatalytic activity and photocurrent[164]
AgBi2O2CO3hydrothermal methodgreatly enhanced photocatalytic activity for ciprofloxacin and[173]
Ag QDsBiOBrionic liquid assistedtetracycline hydrochloride[174]
Ag, Rh, Pt BiOClsolvothermal method photo-depositiononly Ag/BiOCl exhibited enhanced performance for RhB[162]
AuBiVOi4deposition-precipitationhigh photocatalytic efficiency for aqueous HCHO and RhB (Vis)[163]
AuBiOClphotodeposition processhighly enhanced visible light photocatalytic performance for NO[175]
AuBi2O2CO3in situ methodthe photocatalytic activity of co-modified Bi2WOi6, superior to[165]
Ag and CMK-3Bi2WOi6hydrothermal method with hard templateCMK-3/Bi2WOi6 and Ag/Bi2WOi6[176]
Ag and grapheneBi2WOi6hydrothermal processthe significantly enhanced photocatalytic activity[177]
Ag and grapheneBiVOi4solvothermal methodhigher photocatalytic activities than BiVOi4, Ag/BiVOi4 and[178]
PdBiOBrsolvothermal processgrapheme/BiVOi4 for RhB[161]
AgBiVOi4/C microtubesin situ reduction method6.6 times higher than BiOBr for RhB[179]
AgIBi2MoOi6deposition-precipitationhigher photocatalytic activity for RhB[180]
AgIBiPOi4deposition-precipitationhigher photocatalytic activities for RhB and bisphenol A (BPA)[181]
AgClBiOClion exchange routephotocatalytic activity three times as high as AgI for RhB,[182]
Ag@AgClBiVOi4in situ oxidationphotocatalytic activity improved for MO[183]
Ag@AgBrBi2WOi6oil-in-water self-assembly methodkinetic constant 300 times of pristine BiVOi4[184]
Ag/AgClBiOIO3higher photocatalytic activities for methylene blue (MB),[185]
Ag2OBi2WOi6solution precipitationphenol and salicylic acid[186]
Ag3POi4BiVOi4in situ precipitationenhanced activity for NO the constant 4.8 times as high as Bi2WOi6 for RhB[187]
C-based material
carbonBiVOi4impregnation, calcinationsmuch higher photocatalytic activities for RhB[188]
carbonBi4Ti3O12co-precipitation0.5% (w) of C-BiVOi4-cellulose degraded 88.7% of phenol[189]
carbonBi12TiO20hydrothermal process improved photocatalytic activity for MO[190]
CQDsBi2MoOi6followed by calcinations hydrothermaltotally decompose RhB after 120 min irradiation[191]
CQDsBiOCl, BiOBrhydrothermalkinetic constant k 5 times as that of the pure Bi2MoOi6[192]
CQDsBiOClsolvothermal methodmuch higher photocatalytic activity for RhB and ciprofloxacin[193]
CQDsBiOIhydrothermal processsignificantly enhanced photocatalytic performance for[194]
N-doped CQDsBiOIhydrothermal methodBPA and RhB[195]
GQDshollow Bi2MoOi6hydrothermal treatmentkinetic constant k was 2.5 times as high as BiOI for MO[196]
GQDsBiOBrsolvothermal methodhigher photocatalytic activity for MO[197]
GQDsInVOi4/BiVOi4chemical adsorptionmuch higher photocatalytic activity for RhB and BPA[198]
C-60Bi2TiOi4F2solvothermal methodhighly enhanced photocatalytic performance for RhB (Vis)[199]
C-60Bi2MoOi6hydrothermal methodenhanced photocatalytic performance for RhB (Vis)[200]
g-C3N4 QDsBiPOi4impregation, calcinationsmuch stronger photocatalytic performance for RhB[201]
g-C3N4Bi4O5I2solvothermal methodenhanced photocatalytic activity towards Br ions reduction[202]
g-C3N4BiOClhydrothermal processmuch better photocatalytic performance for MO[203]
g-C3N4BiVOi4ultrasonic dispersion methodhigher photocatalytic activity for RhB[204]
BNmicrospherical BiOIolvothermal methodsuperior activity for RhB (visible light)[205]
BNBi2WOi6impregnationbetter performance for CO2 reduction than g-C3N4 and BiVOi4[206]
organic compoundsenhanced photocatalytic activity for RhB, MB and 4-[207]
polyaniline,polypyrrole and polythiopheneBi2WOi6in situ deposition oxidativechlorophenol[208]
polypyrroleBi2WOi6polymerizationhigher photocatalytic activity for RhB[209]
polyanilineBi2WOi6in situ deposition oxidative polymerizationthe total yield of hydrocarbons is 2.8 times higher than that[210]
polyanilineBiVOi4chemical bath depositionover pure Bi2WOi6[211]
polyanilineBi12TiO20sonochemical approachphotocatalytic activities of PPy/ Bi2WOi6 were significantly[212]
polyanilineBiOCltemplate-free hydrothermal processenhanced[213]
conjugatedBi2WOi6 and Bi2MoOi6chemisorptions method precursor calcinationsexcellent performance towards RhB and gasous HCHO[214]
polyene poly(3-hexylthiophene)Bi2WOi6room temperature reactionnotable enhanced photocatalytic performance for[215]
PVPBi2WOi6solvothermal processRhB and phenol[216]
PVPBiOBrsolvothermal processenhanced photocatalytic performance for RhB[217]
molecularlyAgI/BiOI fanoflakekinetic constant k was 15 times that of pure BiOCl for MO[218]
imprinted polymer 1-buty-3-methylimidazolium iodideBiOIpolyol methodthe photocatalytic efficiencies are 4 and 2 times those of Bi2MoOi6 and Bi2WOi6, respectively,[219]
UiO-66 (MOF)Bi2WOi6two-step method[219]
Cu2+SBi2WOi6impregnation methodthan Bi2WOi6[220]
Cu2+OBi2O3low-temperature liquidphase methodenhanced photodegradation for tetracycline hydrochloride[221]
Cu2+OBi2MoOi6reductive solution chemistry routeenhance surface zeta potential and adsorption of RhB[222]
Cu2+OBiVOi4cilinationthe photoactive electrode exhibited high sensitivity and[223]
Cu2+OBiOClsolvothermal processselectivity for determination[224]
Cu2+O QDsBiOBrhydrothermal process followed by impregnationsuperior photocatalytic activity for MO[225]
CuOBiVOi4solvothermal methodenhanced photocatalytic activity for RhB[226]
Cu2+BiOClprecipitation and calcinationenhanced visible-light photocatalytic activity for RhB[227]
Fe3+Bi2WOi6impregnation methodenhanced photocatalytic activity for RhB[228]
Fe3+BiOBrhydrothermal processphotocatalytic activity 6.4 times higher than Bi2MoOi6[229]
Fe3+Bi2Ti2O7impregnating methodbetter photocatalytic performance for MO than BiVOi4 [230]
Fe2O3Bi2WOi6solvothermal methodCu2+O (Vis, LED)[231]
Fe2O3BiVOi4precipitation at presence of Fe3Oi4remarkedly improved efficiency for dye X-3B[232]
Fe2O3Bi2O3co-precipitation followed by calcinationsdegrade rate 11.8 times as high as BiOBr for phenol[233]
Fe2O3, Fe3Oi4BiOBrmetal-organic decompositionimproved photocatalytic activity for toluene[234]
Fe3Oi4BiOItwo-step hydrothermal methodshigher photocatalytic activity for MB and BPA[235]
Mn2+Bi2Ti2O7hydrothermalevidently improved activity of Bi2WOi6[236]
Co3(POi4)2SiO2/BiVOi4solvothermal approachactivities 25.3 and 3.7 times higher than CdS and Bi2MoOi6 for RhB[237]
CdSBi2MoOi6combination of sputtering,blade and photo-depositiongegradation efficiency of tetracycline is over 5 times that of the pure Bi2WOi6[238]
CdSeBi2WOi6mixing methodhigher photocatalytic activity than pure BiOBr (Vis)[239]
CdS QDsBiOBrsolvothermal methodproduced both O2 and H2 without bias potential or[240]
Co3Oi4 and PtBiVOi4/Pt/CaFe2Oi4in situ treatment withsacrificial agents (Vis)
bismuth compound and metel Biphotocatalytic oxidation of phenol were improved[241]
B2O3Bi2WOi6mixing methodphotocatalytic rate of 95.7% in 8 min for MO (UV)[242]
B2O3BiOClsolvothermal methodmuch higher photocatalytic activity than pure β-Bi2O3 and BiOI for MO[243]
B2O3BiOIhydriodic acid in situ etchinghigher photocatalytic activity for RhB[244]
B2S3BiOClsolvothermal methodgreatly enhanced photocatalytic activity for MO[245]
B2S3BiOBrsoft chemical routephoton-to-current conversion efficiency 3 times higher than pure BiOI[246]
B2S3BiOIanion-exchange strategyhighly enhanced photocatalytic activity for NO[247]
Bi2S3Bi2O2CO3hydrothermaleffectively improved photocatalytic activity of Bi2WOi6 and Bi2MoOi6[68]
Bi6Oi6(OH)3(NO3)3Bi2WOi6, Bi2MoOi6hydrothermal methodsuperior activities for phenol degradation[248]
BiOBrBiPOi4deposition-precipitationsuperior photocatalytic activities for MO[249]
BiOIBi2MoOi6anion exchange routesuperior photocatalytic activity for RhB and ciprofloxacin (Vis)[250]
Bi2WOi6BiOClsolvothermal methodthe degradation rate five times that of Bi2MoOi6[251]
Bi2WOi6 QDsBi2WOi6followed by calcinationssurface quantum dots play key roles in enhancing[252]
Bi2WOi6 QDsBi2WOi6hydrothermal methodenhanced the photocatalytic activity for MO (UV and Vis)[253]
metal BiBiOClchemical reductionenhanced photocatalytic degradation of MO, MB and RhB[254]
metal BiBiOClmicrowave reductionenhanced the photocatalytic activity for MO[255]
metal BiBiOClreduction under UVincreased specific surface areas and enhanced photocatalytic degradation of RhB[256]
metal BiBi2MoOi6 hollow microspheremicrowave reductionNO removal ratio 68.1% much higher than Bi2MoOi6[257]
metal BiBi2MoOi6 microspherehydrothermal reactionNO removal ratio 37.2%, higher than (BiO)2CO3 19.1%[258]
metal BiBi2O2CO3hydrothermal reactionstrong photooxidation properties toward phenol, 2,4-[259, 260]
metal BiBiOIO3chemical reductiondichlorophenol, BPA, RhB, gaseous NO (Vis)[261]
metal BiBiOIsolvothermal methodmuch higher photocatalytic performance toword BPA[262]
metal BiBi2WOi6hydrothermal reactionexcellent photocatalytic degradation of Rh6G[263]
表2  常见铋系半导体的表面修饰及其对光催化性能的影响
图12  贵金属在pH为0时的功函数(a)和贵金属与BiOCl界面处能带扭曲(b)示意图[162]
图13  CQDs/Bi2MoO6的(a)低倍、(b)高倍TEM图像和(c)可见光光催化降解环丙沙星的曲线[191]
图14  N-CQDs/BiOI的(a) TEM和(b) HRTEM图像[195]
图15  BiOBr的TEM图像(A)及N-GQDs/BiOBr杂化物的TEM图像(B)、HRTEM图像(C)和XPS谱图(D)[197]
图16  C60/Bi2TiO4F2复合光催化剂在可见光下降解RhB其浓度随时间的变化曲线[199]
图17  几种常见导电聚合物的分子结构式[287]
MaterialConductivity/(S?cm-1)
polyacetylene10-1.7 × 105
polyaniline10-1-103
polypyrrole10-1-7.5 × 103
polythiophene10-103
poly(p-phenylene)102-103
metals (Cu, Au, Ag)105-106
polystyrene10-11-10-10
nylon10-12
表3  部分导电聚合物、金属和塑料的电导率[289, 290]
图18  P3HT/Bi2WO6复合物的TEM图像(a)、FT-IR谱图(b)和模拟太阳光条件下P3HT/Bi2WO6光催化降解RhB的情况(c)[288]
图19  Bi纳米线的导带和价带随直径(dW)的减小位置的变化情况示意图[292]
图20  水热法制备的Bi修饰的Bi2O2CO3的SEM (a)、TEM (b,c)和HRTEM (d)图像[259]
图21  在空气中Bi/Bi2MoO6可见光光催化降解NO的光催化活性(a)及相应的反应动力学常数(k) (b)[258]
MaterialEB(Bi0)/eVEB(Bi3+)/eVRef.
Bi 4f7/2Bi 4f5/2Bi 4f7/2Bi 4f5/2
Bi/Bi2MoO6156.7162.1158.8164.1[258]
Bi/Bi2WO6157.6162.9159.4164.7[263]
Bi/BiOBr158.8164.1160.7166.1[297]
Bi/Bi2O2CO3156.7162.1159.2164.5[259]
Bi/BiOI156.7162.0158.8164.1[262]
表4  部分铋/铋化合物复合材料的Bi 4f5/2和Bi 4f7/2峰位置
图22  Bi2S3修饰的(BiO)2CO3/分级结构微球的TEM、HRTEM图像和形成过程示意图[68]
图23  (A)紫外光光照下苯酚的降解曲线和(B) Bi2O3/Bi2WO6光催化活性提高的可能机理[242]
图24  Bi2WO6量子点修饰的Bi2WO6可见光光催化降解四环素的曲线[253]
图25  Bi2WO6QDs/Bi2WO6的SEM (a)和TEM (b)形貌及其在煅烧温度从200 ℃到500 ℃的工作模式转变示意图(c)[252]
1 Reddy P. ; Reddy P. ; Kwon E. ; Kim K. H. ; Akter T. ; Kalagara S. Environ. Int. 2016, 91, 94.
doi: 10.1016/j.envint.2016.02.012
2 Cao S. ; Tao F. F. ; Tang Y. ; Li Y. ; Yu J. Chem. Soc. Rev. 2016, 45, 4747.
doi: 10.1039/C6CS00094K
3 Trellu C. ; Mousset E. ; Pechaud Y. ; Huguenot D. ; vanHullebusch E. D. ; Esposito G. ; Oturan M. A. J. Hazard. Mater. 2016, 306, 149.
doi: 10.1016/j.jhazmat.2015.12.008
4 Xiang Q. J. ; Cheng B. ; Yu J. G. Angew. Chem. Int. Edit. 2015, 54, 11350.
doi: 10.1002/anie.201411096
5 Cao S.W. ; Low J. X. ; Yu J. G. ; Jaroniec M. Adv. Mater. 2015, 27, 2150.
doi: 10.1002/adma.201500033
6 Low J. X. ; Yu J. G. ; Ho W. K. J. Phys. Chem. Lett 2015, 6, 4244.
doi: 10.1021/acs.jpclett.5b01610
7 Cao S. ; Yu J. J. Photochem. Photobiol. C 2016, 27, 72.
doi: 10.1016/j.jphotochemrev.2016.04.002
8 Yuan L. ; Xu Y. J. Appl. Surf. Sci. 2015, 342, 154.
doi: 10.1016/j.apsusc.2015.03.050
9 Ola O. ; Maroto-Valer M. M. J. Photochem. Photobiol. C 2015, 24, 16.
doi: 10.1016/j.jphotochemrev.2015.06.001
10 Zhou P. ; Yu J. G. ; Jaroniec M. Adv. Mater. 2014, 26, 4920.
doi: 10.1002/adma.201400288
11 Zhang L. S. ; Wang W. Z. ; Yang J. O. ; Chen Z. G. ; Zhang W.Q. ; Zhou L. ; Liu S. W. Appl. Catal. A-Gen. 2006, 308, 105.
doi: 10.1016/j.apcata.2006.04.016
12 Bao H. F. ; Cui X. Q. ; Li C. M. ; Gan Y. ; Zhang J. ; Guo J. J. Phys. Chem. C 2007, 111, 12279.
doi: 10.1021/jp073504t
13 Zhang Z. J. ; Wang W. Z. ; Shang M. ; Yin W. Z. J. Hazard. Mater. 2010, 177, 1013.
doi: 10.1016/j.jhazmat.2010.01.020
14 Zhang L.W. ; Xu T. G. ; Zhao X. ; Zhu Y. F. Appl. Catal. BEnviron. 2010, 98, 138.
doi: 10.1016/j.apcatb.2010.05.022
15 Yang Z. ; Fan H. ; Wang X. ; Long C. J. Phys. Chem. Solids 2013, 74, 1739.
doi: 10.1016/j.jpcs.2013.06.020
16 Castillo N. C. ; Ding L. ; Heel A. ; Graule T. ; Pulgarin C. J. Photochem. Photobiol. A 2010, 216, 221.
doi: 10.1016/j.jphotochem.2010.08.021
17 Li G. F. ; Ding Y. ; Zhang Y. F. ; Lu Z. ; Sun H. Z. ; Chen R. J. Colloid Interface Sci. 2011, 363, 497.
doi: 10.1016/j.jcis.2011.07.090
18 Zhang K. L. ; Liu C. M. ; Huang F. Q. ; Zheng C. ; Wang W. D. Appl. Catal. B-Environ. 2006, 68, 125.
doi: 10.1016/j.apcatb.2006.08.002
19 Shang M. ; Wang W. Z. ; Zhang L. J. Hazard. Mater. 2009, 167, 803.
doi: 10.1016/j.jhazmat.2009.01.053
20 Luz A. ; Feldmann C. Solid State Sci. 2011, 13, 1017.
doi: 10.1016/j.solidstatesciences.2011.01.028
21 He R. A. ; Cao S.W. ; Zhou P. ; Yu J. G. Chin. J. Catal 2014, 35, 989.
doi: 10.1016/S1872-2067(14)60075-9
22 Ramachandran R. ; Sathiya M. ; Ramesha K. ; Prakash A. S. ; Madras G. ; Shukla A. K. J. Chem. Sci. 2011, 123, 517.
doi: 10.1007/s12039-011-0080-9
23 Wang W. J. ; Chen X. Q. ; Liu G. ; Shen Z. R. ; Xia D. H. ; Wong P. K. ; Yu J. C. Appl. Catal. B-Environ. 2015, 176, 444.
24 Zhang L. P. ; Yu an ; S . ; H u ; F . ; Chang X. F. Prog. Chem. 2010, 22, 1729.
张莉平; 袁实; 胡峰; 常晓峰. 化学进展, 2010, 22, 1729.
25 Li E. J. ; Chen L. ; Zhang Q. ; Li W. H. ; Yin S. F. Prog. Chem. 2010, 22, 2282.
李二军; 陈浪; 章强; 李文华; 尹双凤. 化学进展, 2010, 22, 2282.
26 Huang Z. F. ; Pan L. ; Zou J. J. ; Zhang X.W. ; Wang L. Nanoscale 2014, 6, 14044.
doi: 10.1039/C4NR05245E
27 Lin X. ; Guo X. Y. ; Wang Q.W. ; Chang L. M. ; Zhai H. J. Acta Phys. -Chim. Sin. 2014, 30, 2113.
林雪; 郭晓宇; 王庆伟; 常利民; 翟宏菊. 物理化学学报, 2014, 30, 2113.
28 Li J. ; Yu Y. ; Zhang L. Nanoscale 2014, 6, 8473.
doi: 10.1039/C4NR02553A
29 Ni Z. ; Sun Y. ; Zhang Y. ; Dong F. Appl. Surf. Sci. 2016, 365, 314.
doi: 10.1016/j.apsusc.2015.12.231
30 Cheng H. F. ; Huang B. B. ; Dai Y. Nanoscale 2014, 6, 2009.
doi: 10.1039/c3nr05529a
31 Chen L. ; He J. ; Liu Y. ; Chen P. ; Au C. ; Yin S. Chin. J. Catal 2016, 37, 780.
doi: 10.1016/S1872-2067(15)61061-0
32 Zhang L.W. ; Zhu Y. F. Catal. Sci. Tech 2012, 2, 694.
doi: 10.1039/c2cy00411a
33 Xu Y. ; Hu X. ; Zhu H. ; Zhang J. J. Mater. Sci. 2016, 51, 4342.
doi: 10.1007/s10853-016-9745-6
34 Zhong W.W. ; Li D. D. ; Jin S. F. ; Wang W. J. ; Yang X. A. Appl. Surf. Sci. 2015, 356, 1341.
doi: 10.1016/j.apsusc.2015.08.079
35 Wu T. L. ; Liu L. ; Pi M. Y. ; Zhang D. K. ; Chen S. J. Appl. Surf. Sci. 2016, 377, 253.
doi: 10.1016/j.apsusc.2016.03.140
36 Li Y. J. ; Wang Q. ; Liu B. C. ; Zhang J. Appl. Surf. Sci. 2015, 349, 957.
doi: 10.1016/j.apsusc.2015.05.100
37 Wu S. J. ; Wang C. ; Cui Y. F. Appl. Surf. Sci. 2014, 289, 266.
doi: 10.1016/j.apsusc.2013.10.148
38 Liu W. ; Zhao G. S. ; An M. Z. ; Chang L. M. Appl. Surf. Sci. 2015, 357, 1053.
doi: 10.1016/j.apsusc.2015.09.117
39 Gao M. ; Zhang D. ; Pu X. ; Li M. ; Yu Y. M. ; Shim J. J. ; Cai P. ; Kim S. I. ; Seo H. J. J. Am. Ceram. Soc. 2015, 98, 1515.
doi: 10.1111/jace.2015.98.issue-5
40 Liu Y. Y. ; Wang Z. Y. ; Huang B. B. ; Yang K. S. ; Zhang X.Y. ; Qin X. Y. ; Dai Y. Appl. Surf. Sci. 2010, 257, 172.
doi: 10.1016/j.apsusc.2010.06.058
41 Yu S. J. ; Zhang G. K. ; Gao Y. Y. ; Huang B. B. J. Colloid Interface Sci. 2011, 354, 322.
doi: 10.1016/j.jcis.2010.10.012
42 Jagdale P. ; Castellino M. ; Marrec F. ; Rodil S. E. ; Tagliaferro A. Appl. Surf. Sci. 2014, 303, 250.
doi: 10.1016/j.apsusc.2014.02.158
43 Liu Z. S. ; Wu B. T. ; Niu J. N. ; Huang X. ; Zhu Y. B. Appl. Surf. Sci. 2014, 288, 369.
doi: 10.1016/j.apsusc.2013.10.034
44 Li R. ; Gao X. Y. ; Fan C. M. ; Zhang X. C. ; Wang Y.W. ; Wang Y. F. Appl. Surf. Sci. 2015, 355, 1075.
doi: 10.1016/j.apsusc.2015.07.216
45 Zhou Y. ; Tian Z. ; Zhao Z. ; Liu Q. ; Kou J. ; Chen X. ; Gao J. ; Yan S. ; Zou Z. ACS Appl. Mater. Interfaces 2011, 3, 3594.
doi: 10.1021/am2008147
46 Zhou Y. ; Zhang Y. ; Lin M. ; Long J. ; Zhang Z. ; Lin H. ; Wu J. C. ; Wang X. Nat. Commun 2015, 6, 8340.
doi: 10.1038/ncomms9340
47 Jiang J. ; Zhao K. ; Xiao X. Y. ; Zhang L. Z. J. Am. Chem. Soc 2012, 134, 4473.
doi: 10.1021/ja210484t
48 Li J. ; Zhang L. Z. ; Li Y. J. ; Yu Y. Nanoscale 2014, 6, 167.
doi: 10.1039/C3NR05246J
49 Wang W. J. ; Huang B. B. ; Ma X. C. ; Wang Z. Y. ; Qin X. Y. ; Zhang X. Y. ; Dai Y. ; Whangbo M. H. Chem.-Eur. J. 2013, 19, 14777.
doi: 10.1002/chem.201302884
50 Wang W. J. ; Cheng H. F. ; Huang B. B. ; Liu X. L. ; Qin X.Y. ; Zhang X. Y. ; Dai Y. J. Colloid Interface Sci. 2015, 442, 97.
doi: 10.1016/j.jcis.2014.11.061
51 Huang H.W. ; He Y. ; Lin Z. S. ; Kang L. ; Zhang Y. H. J. Phys. Chem. C 2013, 117, 22986.
doi: 10.1021/jp4084184
52 Zhang R. ; Dai Y. ; Lou Z. Z. ; Li Z. J. ; Wang Z. Y. ; Yang Y.M. ; Qin X. Y. ; Zhang X. Y. ; Huang B. B. CrystEngComm 2014, 16, 4931.
doi: 10.1039/c4ce00162a
53 Su Y. ; Zhang L. ; Wang W. Z. Int. J. Hydrog. Energy 2016, 41, 10170.
doi: 10.1016/j.ijhydene.2016.04.236
54 He R. ; Zhang J. ; Yu J. ; Cao S. J. Colloid Interface Sci 2016, 478, 201.
doi: 10.1016/j.jcis.2016.06.012
55 Ai Z. H. ; Wang J. L. ; Zhang L. Z. Chin. J. Catal 2015, 36, 2145.
doi: 10.1016/S1872-2067(15)60986-X
56 Liang L. ; Lei F. C. ; Gao S. ; Sun Y. F. ; Jiao X. C. ; Wu J. ; Qamar S. ; Xie Y. Angew. Chem. Int. Edit. 2015, 54, 13971.
doi: 10.1002/anie.201506966
57 Guan M. ; Xiao C. ; Zhang J. ; Fan S. ; An R. ; Cheng Q. ; Xie J. ; Zhou M. ; Ye B. ; Xie Y. J. Am. Chem. Soc 2013, 135, 10411.
doi: 10.1021/ja402956f
58 Wang J. ; Zhang Y. ; Tian L. ; Liu F. ; Xia Q. J. Nanopart. Res 2014, 16, 2691.
doi: 10.1007/s11051-014-2691-9
59 Zhao Z. Y. ; Dai W. W. Inorg. Chem. 2015, 54, 10732.
doi: 10.1021/acs.inorgchem.5b01714
60 Li X. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2016, 45, 2603.
doi: 10.1039/C5CS00838G
61 Kawade U. V. ; Panmand R. P. ; Sethi Y. A. ; Kulkarni M. V. ; Apte S. K. ; Naik S. D. ; Kale B. B. RSC Adv 2014, 4, 49295.
doi: 10.1039/C4RA07143C
62 Chen J. ; Qin S. ; Song G. ; Xiang T. ; Xin F. ; Yin X. Dalton T 2013, 42, 15133.
doi: 10.1039/c3dt51887f
63 Zhang J. ; Han Q. ; Wang X. ; Zhu J. ; Duan G. Mater. Lett. 2016, 162, 218.
doi: 10.1016/j.matlet.2015.10.024
64 Yang L. ; Han Q. ; Zhao J. ; Zhu J. ; Wang X. ; Ma W. J. Alloy. Compd 2014, 614, 353.
doi: 10.1016/j.jallcom.2014.06.011
65 Wang J. L. ; Yang X. D. ; Zhao K. ; Xu P. F. ; Zong L. B. ; Yu R. B. ; Wang D. ; Deng J. X. ; Chen J. ; Xing X. R. J. Mater. Chem. A 2013, 1, 9069.
doi: 10.1039/c3ta11652b
66 Selvamani T. ; Raj B. ; Anandan S. ; Wu J. J. ; Ashokkumar M. Phys. Chem. Chem. Phys. 2016, 18, 7768.
doi: 10.1039/C5CP07523H
67 Xiong T. ; Huang H. ; Sun Y. ; Dong F. J. Mater. Chem. A 2015, 3, 6118.
doi: 10.1039/C5TA00103J
68 Dong F. ; Feng X. ; Zhang Y. ; Gao C. ; Wu Z. RSC Adv 2015, 5, 11714.
doi: 10.1039/C4RA15798B
69 Yang L. ; Han Q. ; Zhu J. ; Wang X. Mater. Lett. 2015, 138, 235.
doi: 10.1016/j.matlet.2014.10.003
70 Xiong T. ; Dong F. ; Wu Z. RSC Adv 2014, 4, 56307.
doi: 10.1039/C4RA10786A
71 Tang J. ; Zhao H. ; Li G. ; Lu Z. ; Xiao S. ; Chen R. Ind. Eng. Chem. Res. 2013, 52, 12604.
doi: 10.1021/ie401840x
72 Ying Y. ; Tao F. ; Hong T. ; Wang L. Mat. Sci. Semicon. Proc. 2015, 32, 82.
doi: 10.1016/j.mssp.2015.01.009
73 Wang B. ; Guo L. ; He T. RSC Adv 2016, 6, 30115.
doi: 10.1039/C5RA21687G
74 Ma L. ; Xu L. ; Zhang L. Micro Nano Lett 2014, 9, 451.
doi: 10.1049/mnl.2014.0128
75 Dong S. ; Feng J. ; Li Y. ; Hu L. ; Liu M. ; Wang Y. ; Pi Y. ; Sun J. ; Sun J. Appl. Catal. B-Environ. 2014, 152, 413.
76 Xing X. ; Ma Y. ; Li J. ; Fan G. ; Ding H. ; Ma X. ; Yang L. ; Xi G. CrystEngComm 2014, 16, 10218.
doi: 10.1039/C4CE01198H
77 Wei W. ; Yue X. ; Cui H. ; Lu X. ; Xie J. J. Mater. Res. 2013, 28, 3408.
doi: 10.1557/jmr.2013.366
78 Madhusudan P. ; Kumar M. V. ; Ishigaki T. ; Toda K. ; Uematsu K. ; Sato M. Environ. Sci. Pollut. R 2013, 20, 6638.
doi: 10.1007/s11356-013-1694-x
79 Zeng S. ; Tang R. ; Duan S. ; Li L. ; Liu C. ; Gu X. ; Wang S. ; Sun D. J. Colloid Interface Sci. 2014, 432, 236.
doi: 10.1016/j.jcis.2014.06.042
80 Sheng J. Y. ; Li X. J. ; Xu Y. M. Acta Phys. -Chim. Sin. 2014, 30, 508.
盛珈怡; 李晓金; 许宜铭. 物理化学学报, 2014, 30, 508.
81 Lv H. ; Guang J. ; Liu Y. ; Tang H. ; Zhang P. ; Lu Y. ; Wang J. RSC Adv 2015, 5, 100625.
doi: 10.1039/C5RA14626G
82 Ma L. ; Xu L. ; Xu X. ; Zhou X. ; Zhang L. Chem. Lett. 2014, 43, 1306.
doi: 10.1246/cl.140386
83 Pei L. ; Wei T. ; Lin N. ; Yu H. Int. J. Mater. Res 2016, 107, 477.
doi: 10.3139/146.111364
84 Wei W. ; Xie J. M. ; Meng S. C. ; Lu X. M. ; Yan Z. X. ; Zhu J. J. ; Cui H. L. J. Mater. Res. 2013, 28, 1658.
doi: 10.1557/jmr.2013.65
85 Li T. ; Lin L. ; Wei H. ; Liang G. ; Kuang X. ; Liu T. Physica E 2016, 76, 198.
doi: 10.1016/j.physe.2015.10.029
86 Sun D. ; Wang T. ; Xu Y. ; Li R. ; Sato T. Mat. Sci. Semicon. Proc. 2015, 31, 666.
doi: 10.1016/j.mssp.2014.12.046
87 Hao H. ; Xu Y. ; Liu P. ; Zhang G. Chin. Chem. Lett 2015, 26, 133.
doi: 10.1016/j.cclet.2014.11.022
88 Li G. ; Jiang B. ; Xiao S. ; Lian Z. ; Zhang D. ; Yu J. C. ; Li H. Environ. Sci. Proc. Impacts 2014, 16, 1975.
doi: 10.1039/C4EM00196F
89 Xie Y. ; Chang F. ; Li C. ; Chen J. ; Luo J. ; Li L. ; Hu X. Clean-Soil Air Water 2014, 42, 521.
doi: 10.1002/clen.v42.4
90 Chang F. ; Luo J. ; Wang X. ; Xie Y. ; Deng B. ; Hu X. J. Colloid Interface Sci. 2015, 459, 136.
doi: 10.1016/j.jcis.2015.08.023
91 Shi X. J. ; Chen X. ; Chen X. L. ; Zhou S. M. ; Lou S. Y. ; Wang Y. Q. ; Yuan L. Chem. Eng. J. 2013, 222, 120.
doi: 10.1016/j.cej.2013.02.034
92 Li H. ; Liu J. ; Hu T. ; Du N. ; Song S. ; Hou W. Mater. Res. Bull. 2016, 77, 171.
doi: 10.1016/j.materresbull.2016.01.039
93 Zhao Y. ; Tan X. ; Yu T. ; Wang S. Mater. Lett. 2016, 164, 243.
doi: 10.1016/j.matlet.2015.10.155
94 Jia M. ; Hu X. ; Wang S. ; Huang Y. ; Song L. J. Environ. Sci 2015, 35, 172.
doi: 10.1016/j.jes.2014.09.045
95 Ai L. ; Zeng Y. ; Jiang J. Chem. Eng. J. 2014, 235, 331.
doi: 10.1016/j.cej.2013.09.046
96 Liu Q. ; Ma D. ; Hu Y. ; Zeng Y. ; Huang S. ACS Appl. Mater. Interfaces 2013, 5, 11927.
doi: 10.1021/am4036702
97 Xiao X. ; Xing C. ; He G. ; Zuo X. ; Nan J. ; Wang L. Appl. Catal. B-Environ. 2014, 148, 154.
98 He R. ; Cao S. ; Yu J. ; Yang Y. Catal. Today 2016, 264, 221.
doi: 10.1016/j.cattod.2015.07.029
99 Cui Z. K. ; Mi L.W. ; Zeng D. W. J. Alloy. Compd 2013, 549, 70.
doi: 10.1016/j.jallcom.2012.09.075
100 Wang Y. ; Zhao J. ; Zhu Y. ; Zhou B. ; Zhao X. ; Wang Z. Colloids Surf. A 2013, 434, 296.
doi: 10.1016/j.colsurfa.2013.05.078
101 Li C. ; Chen G. ; Sun J. ; Feng Y. ; Liu J. ; Dong H. Appl. Catal. B-Environ. 2015, 163, 415.
doi: 10.1016/j.apcatb.2014.07.060
102 Chen L. ; Huang R. ; Xiong M. ; Yuan Q. ; He J. ; Jia J. ; Yao M. ; Luo S. ; Au C. ; Yin S. Inorg. Chem. 2013, 52, 11118.
doi: 10.1021/ic401349j
103 Qin X. Y. ; Cheng H. F. ; Wang W. J. ; Huang B. B. ; Zhang X.Y. ; Dai Y. Mater. Lett. 2013, 100, 285.
doi: 10.1016/j.matlet.2013.03.045
104 Tan G. Q. ; Zhang L. L. ; Ren H. J. ; Wei S. S. ; Huang J. ; Xia A. ACS Appl. Mater. Interfaces 2013, 5, 5186.
doi: 10.1021/am401019m
105 Chen F. ; Cao Y. ; Jia D. J. Colloid Interface Sci. 2013, 404, 110.
doi: 10.1016/j.jcis.2013.04.013
106 Xu M. ; Zhao Y. ; Yan Q. Water Sci. Technol. 2015, 72, 2122.
doi: 10.2166/wst.2015.433
107 Bhat S. S. M. ; Sundaram N. G. New J. Chem. 2015, 39, 3956.
doi: 10.1039/C4NJ01814A
108 Lin H. ; Zhou C. ; Cao J. ; Chen S. Chin. Sci. Bull 2014, 59, 3420.
doi: 10.1007/s11434-014-0433-0
109 Han G. ; Chen Z. ; Ye D. ; Yang L. ; Wang L. ; Drennan J. ; Zou J. J. Mater. Chem. A 2014, 2, 7109.
doi: 10.1039/c4ta00045e
110 Zhang P. ; Shao C. ; Zhang M. ; Guo Z. ; Mu J. ; Zhang Z. ; Zhang X. ; Liu Y. J. Hazard. Mater. 2012, 217
111 Rauf A. ; Shah M. S. A. S. ; Choi G. H. ; Humayoun U. B. ; Yoon D. H. ; Bae J.W. ; Park J. ; Kim W. ; Yoo P. J. ACS Sustain. Chem. Eng 2015, 3, 2847.
doi: 10.1021/acssuschemeng.5b00783
112 Zhang J. ; Han Q. ; Zhu J. ; Wang X. J. Colloid Interface Sci. 2016, 477, 25.
doi: 10.1016/j.jcis.2016.05.027
113 Wu T. ; Li X. ; Zhang D. ; Dong F. ; Chen S. J. Alloy. Compd 2016, 671, 318.
doi: 10.1016/j.jallcom.2016.01.267
114 Gnayem H. ; Sasson Y. ACS Catal 2013, 3, 186.
doi: 10.1021/cs3005133
115 Ou M. ; Dong F. ; Zhang W. ; Wu Z. Chem. Eng. J. 2014, 255, 650.
doi: 10.1016/j.cej.2014.06.086
116 Zhu Z. ; Yan Y. ; Li J. Micro. Nano Lett 2015, 10, 460.
doi: 10.1049/mnl.2015.0147
117 He G. ; Xing C. ; Xiao X. ; Hu R. ; Zuo X. ; Nan J. Appl. Catal. B-Environ. 2015, 170, 1.
118 Dai Z. ; Qin F. ; Zhao H. P. ; Tian F. ; Liu Y. L. ; Chen R. Nanoscale 2015, 7, 11991.
doi: 10.1039/C5NR02745D
119 Peng Y. ; Yan M. ; Chen Q. ; Fan C. ; Zhou H. ; Xu A. J. Mater. Chem. A 2014, 2, 8517.
doi: 10.1039/c4ta00274a
120 Tu S. ; Lu M. ; Xiao X. ; Zheng C. ; Zhong H. ; Zuo X. ; Nan J. RSC Adv 2016, 6, 44552.
doi: 10.1039/C6RA03988J
121 Li J. ; Guo Z. ; Wang Y. ; Zhu Z. Micro Nano Lett 2014, 9, 65.
doi: 10.1049/mnl.2013.0546
122 Chen L. ; He J. ; Yuan Q. ; Zhang Y. ; Wang F. ; Au C. ; Yin S. RSC Adv 2015, 5, 33747.
doi: 10.1039/C5RA02316E
123 Lei S. ; Wang C. ; Cheng D. ; Gao X. ; Chen L. ; Yan Y. ; Zhou J. ; Xiao Y. ; Cheng B. J. Phys. Chem. C 2015, 119, 502.
doi: 10.1021/jp5108679
124 Wang W. J. ; Cheng H. F. ; Huang B. B. ; Lin X. J. ; Qin X. Y. ; Zhang X. Y. ; Dai Y. J. Colloid Interface Sci. 2013, 402, 34.
doi: 10.1016/j.jcis.2013.03.054
125 Xu X. ; Shen X. P. ; Zhu G. X. ; Jing L. Q. ; Liu X. S. ; Chen K. M. Chem. Eng. J. 2012, 200, 521.
126 Liu H. Y. ; Guo Y. P. ; Guo B. ; Dong W. ; Zhang D. J. Eur. Ceram. Soc. 2012, 32, 4335.
doi: 10.1016/j.jeurceramsoc.2012.07.008
127 Li C. ; Chen G. ; Sun J. ; Feng Y. ; Dong H. ; Han Z. ; Hu Y. ; Lv C. New J. Chem. 2015, 39, 4384.
doi: 10.1039/C4NJ01940G
128 Wang X. ; Wan X. ; Chang L. Catal. Lett. 2014, 144, 1268.
doi: 10.1007/s10562-014-1271-z
129 Zhang P. ; Zhang J. ; Xie A. ; Li S. ; Song J. ; Shen Y. RSC Adv 2015, 5, 23080.
doi: 10.1039/C4RA14782K
130 Hu S. ; Xu C. ; Zhen L. Mater. Lett. 2013, 95, 117.
doi: 10.1016/j.matlet.2012.12.058
131 Hou L. ; Hua H. ; Gan L. ; Yuan C. Mater. Lett. 2015, 159, 35.
doi: 10.1016/j.matlet.2015.06.073
132 Tian G. ; Chen Y. ; Zhou W. ; Pan K. ; Dong Y. ; Tian C. ; Fu H. J. Mater. Chem. 2011, 21, 887.
doi: 10.1039/C0JM03040F
133 Wang Z. ; Qi Y. ; Qi H. ; Lu C. ; Wang S. J. Mater. Sci.-Mater. El. 2010, 21, 523.
doi: 10.1007/s10854-009-9950-z
134 Yu J. G. ; Yu H. G. ; Guo H. T. ; Li M. ; Mann S. Small 2008, 4, 87.
doi: 10.1002/(ISSN)1613-6829
135 Yu J. G. ; Zhang J. Dalton T 2010, 39, 5860.
doi: 10.1039/c0dt00053a
136 Yu J. G. ; Guo H. T. ; Davis S. A. ; Mann S. Adv. Funct. Mater. 2006, 16, 2035.
doi: 10.1002/(ISSN)1616-3028
137 Cheng H. ; Huang B. ; Liu Y. ; Wang Z. ; Qin X. ; Zhang X. ; Dai Y. Chem Commun 2012, 48, 9729.
doi: 10.1039/c2cc35289c
138 Ma D. ; Zhou S. ; Hu X. ; Jiang Q. ; Huang S. Mater. Chem. Phys. 2013, 140, 11.
doi: 10.1016/j.matchemphys.2013.03.066
139 Yan Y. ; Zhou Z. ; Cheng Y. ; Qiu L. ; Gao C. ; Zhou J. J. Alloy. Compd 2014, 605, 102.
doi: 10.1016/j.jallcom.2014.03.111
140 Jin R. ; Li G. ; Xu Y. ; Liu J. ; Chen G. Int. J. Hydrog. Energy 2014, 39, 356.
doi: 10.1016/j.ijhydene.2013.10.007
141 Li J. ; Liu X. ; Sun Z. ; Pan L. Ceram. Int. 2015, 41, 8592.
doi: 10.1016/j.ceramint.2015.03.068
142 Cheng H. ; Huang B. ; Wang Z. ; Qin X. ; Zhang X. ; Dai Y. Chem.-Eur. J. 2011, 17, 8039.
doi: 10.1002/chem.v17.29
143 Li J. ; Cui M. ; Liu Z. ; Du J. ; Zhu Z. Phys. Status Solidi A 2013, 210, 1881.
144 Li X. ; Huang R. ; Hu Y. ; Chen Y. ; Liu W. ; Yuan R. ; Li Z. Inorg. Chem. 2012, 51, 6245.
doi: 10.1021/ic300454q
145 Zhang K. ; Zhang D. ; Liu J. ; Ren K. ; Luo H. ; Peng Y. ; Li G. ; Yu X. CrystEngComm 2012, 14, 700.
doi: 10.1039/C1CE05755C
146 Li J. ; Liu X. ; Sun Z. ; Sun Y. ; Pan L. J. Colloid Interface Sci. 2015, 452, 109.
doi: 10.1016/j.jcis.2015.04.026
147 Sun S. ; Wang W. ; Zhang L. J. Mater. Chem. 2012, 22, 19244.
doi: 10.1039/c2jm34211a
148 Ai Z. ; Lu G. ; Lee S. J. Alloy. Compd 2014, 613, 260.
doi: 10.1016/j.jallcom.2014.06.039
149 Ding L. Y. ; Chen H. ; Wang Q. Q. ; Zhou T. F. ; Jiang Q. Q. ; Yuan Y. H. ; Li J. L. ; Hu J. C. Chem. Commun. 2016, 52, 994.
doi: 10.1039/C5CC08146G
150 Yin C. ; Zhu S. M. ; Chen Z. X. ; Zhang W. ; Gu J. J. ; Zhang D. J. Mater. Chem. A 2013, 1, 8367.
doi: 10.1039/c3ta11833a
151 Tian Y. ; Zhang L. D. ; Zhang J. X. J. Alloy. Compd 2012, 537, 24.
doi: 10.1016/j.jallcom.2012.05.029
152 Luo Y. Y. ; Tan G. Q. ; Dong G. H. ; Zhang L. L. ; Huang J. ; Yang W. ; Zhao C. C. ; Ren H. J. Appl. Surf. Sci. 2015, 324, 505.
doi: 10.1016/j.apsusc.2014.10.168
153 Luo X. C. ; Zhu G. Q. ; Peng J. H. ; Wei X. M. ; Hojamberdiev M. ; Jin L. ; Liu P. Appl. Surf. Sci. 2015, 351, 260.
doi: 10.1016/j.apsusc.2015.05.137
154 Zhang Z. ; Wang W. ; Gao E. ; Sun S. ; Zhang L. J. Phys. Chem. C 2012, 116, 25898.
doi: 10.1021/jp309719q
155 Sun S. M. ; Wang W. Z. ; Zhang L. ; Shang M. ; Wang L. Catal. Commun 2009, 11, 290.
doi: 10.1016/j.catcom.2009.09.026
156 Takami A. ; Hideaki Kurita A. ; Koda S. J. Phys. Chem. B 1999, 103, 1226.
doi: 10.1021/jp983503o
157 Roper D. K. ; Ahn W. ; Hoepfner M. J. Phys. Chem. C 2007, 111, 3636.
doi: 10.1021/jp064341w
158 Gao M. Y. ; Jiang D. ; Sun D. K. ; Hou B. ; Li D. B. Acta Chim. Sin 2014, 72, 1092.
doi: 10.6023/A14070535
高梦语; 姜东; 孙德魁; 侯博; 李德宝. 化学学报, 2014, 72, 1092.
doi: 10.6023/A14070535
159 Qamar M. ; Khan A. RSC Adv 2014, 4, 9542.
doi: 10.1039/c3ra45948a
160 Yu Y. ; Lu S. ; Bao S. J. Nanopart. Res 2015, 17, 323.
doi: 10.1007/s11051-015-3124-0
161 Wang R. ; Li X.W. ; Cui W. ; Zhang Y. X. ; Dong F. New J. Chem. 2015, 39, 8446.
doi: 10.1039/C5NJ01882J
162 Di J. ; Xia J. X. ; Yin S. ; Xu H. ; Xu L. ; Xu Y. G. ; He M. Q. ; Li H. M. ; Wang J. G. Mater. Technol. 2015, 30, 113.
doi: 10.1179/1753555714Y.0000000226
163 Kong L. ; Jiang Z. ; Lai H. H. C. ; Xiao T. ; Edwards P. P. Prog. Nat. Sci 2013, 23, 286.
doi: 10.1016/j.pnsc.2013.05.002
164 Long M. ; Jiang J. ; Li Y. ; Cao R. ; Zhang L. ; Cai W. Nano- Micro. Lett 2011, 3, 171.
doi: 10.1007/BF03353669
165 Lu L. ; Kong L. ; Jiang Z. ; Lai H. H. C. ; Xiao T. ; Edwards P. P. Catal. Lett. 2012, 142, 771.
doi: 10.1007/s10562-012-0824-2
166 Murakami N. ; Takebe N. ; Tsubota T. ; Ohno T. J. Hazard. Mater. 2012, 211, 83.
167 Li J. ; Guo Z. ; Zhu Z. Ceram. Int. 2014, 40, 6495.
doi: 10.1016/j.ceramint.2013.11.102
168 Wang F. ; Cao K. ; Wu Y. ; Zhang K. H. ; Zhou Y. Appl. Surf. Sci. 2016, 360, 1075.
doi: 10.1016/j.apsusc.2015.11.061
169 Li J. ; Zhou J. ; Hao H. ; Zhu Z. Mater. Lett. 2016, 170, 163.
doi: 10.1016/j.matlet.2016.02.036
170 Phuruangrat A. ; Putdum S. ; Dumrongrojthanath P. ; Ekthammathat N. ; Thongtem S. ; Thongtem T. Mat. Sci. Semicon. Proc. 2015, 34, 175.
doi: 10.1016/j.mssp.2015.02.028
171 Dutta D. P. ; Tyagi A. K. Mater. Res. Bull. 2016, 74, 397.
doi: 10.1016/j.materresbull.2015.11.005
172 Zhang L. ; Niu J. ; Li D. ; Gao D. ; Shi J. Adv. Cond. Matter. Phys 2014, 749354
173 Dong F. ; Li Q. ; Zhou Y. ; Sun Y. ; Zhang H. ; Wu Z. Dalton T 2014, 43, 9468.
doi: 10.1039/c4dt00427b
174 Di J. ; Xia J. ; Ji M. ; Wang B. ; Yin S. ; Huang Y. ; Chen Z. ; Li H. Appl. Catal. B-Environ. 2016, 188, 376.
doi: 10.1016/j.apcatb.2016.01.062
175 Yan X. ; Zhu X. ; Li R. ; Chen W. J. Hazard. Mater. 2016, 303, 1.
doi: 10.1016/j.jhazmat.2015.10.029
176 Zhao Q. ; Gong M. ; Liu W. ; Mao Y. ; Le S. ; Ju S. ; Long F. ; Liu X. ; Liu K. ; Jiang T. Appl. Surf. Sci. 2015, 332, 138.
doi: 10.1016/j.apsusc.2015.01.122
177 Low J. ; Yu J. ; Li Q. ; Cheng B. Phys. Chem. Chem. Phys. 2014, 16, 1111.
doi: 10.1039/C3CP53820F
178 Xu L. ; Wei Y. G. ; Guo W. ; Guo Y. H. ; Guo Y. N. Appl. Surf. Sci. 2015, 332, 682.
doi: 10.1016/j.apsusc.2015.01.235
179 Zhang M. ; Shao C. ; Li X. ; Zhang P. ; Sun Y. ; Su C. ; Zhang X. ; Ren J. ; Liu Y. Nanoscale 2012, 4, 7501.
doi: 10.1039/c2nr32213g
180 Xu M. ; Zhang W. Eur. J. Inorg. Chem. 2016, 2016, 826.
doi: 10.1002/ejic.201501260
181 Ye H. ; Lin H. ; Cao J. ; Chen S. ; Chen Y. J. Mol. Catal. AChem 2015, 397, 85.
doi: 10.1016/j.molcata.2014.11.005
182 Cheng J. ; Wang C. ; Cui Y. ; Sun Y. ; Zuo Y. ; Wang T. Mater. Lett. 2014, 127, 28.
doi: 10.1016/j.matlet.2014.04.012
183 Li H. ; Sun Y. ; Cai B. ; Gan S. ; Han D. ; Niu L. ; Wu T. Appl. Catal. B-Environ. 2015, 170, 206.
184 Lin S. L. ; Liu L. ; Hu J. S. ; Liang Y. H. ; Cui W. Q. Appl. Surf. Sci. 2015, 324, 20.
doi: 10.1016/j.apsusc.2014.10.101
185 Xiong T. ; Zhang H. J. ; Zhang Y. X. ; Dong F. Chin. J. Catal 2015, 36, 2155.
doi: 10.1016/S1872-2067(15)60980-9
186 Liu C. ; Liu J. ; Zhang G. ; Zhang J. ; Wu Q. ; Xu Y. ; Sun Y. RSC Adv 2015, 5, 32333.
doi: 10.1039/C5RA01568E
187 Ge M. ; Tan M. L. ; Cui G. H. Acta Phys. -Chim. Sin. 2014, 30, 2107.
葛明; 谭勉勉; 崔广华. 物理化学学报, 2014, 30, 2107.
188 Niu M. ; Zhu R. ; Tian F. ; Song K. ; Cao G. ; Ouyang F. Catal. Today 2015, 258, 585.
doi: 10.1016/j.cattod.2015.04.005
189 Chen J. ; Mei W. ; Liu C. ; Hu C. ; Huang Q. ; Chen N. ; Chen J. ; Zhang R. ; Hou W. Mater. Lett. 2016, 172, 184.
doi: 10.1016/j.matlet.2016.03.002
190 Hou J. ; Jiao S. ; Zhu H. ; Kumar R. V. CrystEngComm 2011, 13, 4735.
doi: 10.1039/c1ce05409k
191 Di J. ; Xia J. ; Ji M. ; Li H. ; Xu H. ; Li H. ; Chen R. Nanoscale 2015, 7, 11433.
doi: 10.1039/C5NR01350J
192 Xia J. X. ; Di J. ; Li H. T. ; Xu H. ; Li H. M. ; Guo S. J. Appl. Catal. B-Environ. 2016, 181, 260.
doi: 10.1016/j.apcatb.2015.07.035
193 Di J. ; Xia J. ; Ji M. ; Wang B. ; Yin S. ; Zhang Q. ; Chen Z. ; Li H. ACS Appl. Mater. Interfaces 2015, 7, 20111.
doi: 10.1021/acsami.5b05268
194 Chen Y. ; Lu Q. ; Yan X. ; Mo Q. ; Chen Y. ; Liu B. ; Teng L. ; Xiao W. ; Ge L. ; Wang Q. Nanoscale Res. Lett 2016, 11, 60.
doi: 10.1186/s11671-016-1262-7
195 Di J. ; Xia J. ; Ji M. ; Xu L. ; Yin S. ; Chen Z. ; Li H. J. Mater. Chem. A 2016, 4, 5051.
doi: 10.1039/C6TA00284F
196 Hao Y. C. ; Dong X. L. ; Wang X. Y. ; Zhai S. R. ; Ma H. C. ; Zhang X. F. J. Mater. Chem. A 2016, 4, 8298.
doi: 10.1039/C6TA02371A
197 Yin Y. Y. ; Liu Q. ; Jiang D. ; Du X. J. ; Qian J. ; Mao H. P. ; Wang K. Carbon 2016, 96, 1157.
doi: 10.1016/j.carbon.2015.10.068
198 Lin X. ; Wang Y. S. ; Zheng J. ; Liu C. ; Yang Y. ; Che G. B. Dalton T 2015, 44, 19185.
doi: 10.1039/C5DT03251B
199 Li G. ; Jiang B. ; Li X. ; Lian Z. ; Xiao S. ; Zhu J. ; Zhang D. ; Li H. ACS Appl. Mater. Interfaces 2013, 5, 7190.
doi: 10.1021/am401525m
200 Zhao X. ; Liu H. ; Shen Y. ; Qu J. Appl. Catal. B-Environ. 2011, 106, 63.
201 Li Z. S. ; Li B. L. ; Peng S. H. ; Li D. H. ; Yang S. Y. ; Fang Y. P. RSC Adv 2014, 4, 35144.
doi: 10.1039/C4RA05749J
202 Xia J. ; Ji M. ; Di J. ; Wang B. ; Yin S. ; Zhang Q. ; He M. ; Li H. Appl. Catal. B-Environ. 2016, 191, 235.
doi: 10.1016/j.apcatb.2016.02.058
203 Shi S. ; Gondal M. A. ; Al-Saadi A. A. ; Fajgar R. ; Kupcik J. ; Chang X. ; Shen K. ; Xu Q. ; Seddigi Z. S. J. Colloid Interface Sci. 2014, 416, 212.
doi: 10.1016/j.jcis.2013.10.052
204 Huang Y. ; Fu M. ; He T. Acta Phys. -Chim. Sin. 2015, 31, 1145.
黄艳; 傅敏; 贺涛. 物理化学学报, 2015, 31, 1145.
205 Liu D. ; Jiang Z. ; Zhu C. ; Qian K. ; Wu Z. ; Xie J. Dalton T 2016, 45, 2505.
doi: 10.1039/C5DT03408F
206 Li W. ; Wang Q. ; Huang L. ; Li Y. ; Xu Y. ; Song Y. ; Zhang Q. ; Xu H. ; Li H. RSC Adv 2015, 5, 88832.
doi: 10.1039/C5RA15417K
207 Dai W. ; Xu H. ; Yu J. ; Hu X. ; Luo X. ; Tu X. ; Yang L. Appl. Surf. Sci. 2015, 356, 173.
doi: 10.1016/j.apsusc.2015.08.059
208 Duan F. ; Zhang Q. ; Shi D. ; Chen M. Appl. Surf. Sci. 2013, 268, 129.
doi: 10.1016/j.apsusc.2012.12.031
209 Wang W. ; Xu J. ; Zhang L. ; Sun S. Catal. Today 2014, 224, 147.
doi: 10.1016/j.cattod.2013.11.030
210 Shang M. ; Wang W. ; Sun S. ; Ren J. ; Zhou L. ; Zhang L. J. Phys. Chem. C 2009, 113, 20228.
doi: 10.1021/jp9067729
211 Hou J. ; Cao R. ; Jiao S. ; Zhu H. ; Kumar R. V. Appl. Catal. BEnviron. 2011, 104, 399.
doi: 10.1016/j.apcatb.2011.02.032
212 Wang Q. ; Hui J. ; Li J. ; Cai Y. ; Yin S. ; Wang F. ; Su B. Appl. Surf. Sci. 2013, 283, 577.
doi: 10.1016/j.apsusc.2013.06.149
213 Li H. ; Hou W. ; Tao X. ; Du N. Appl. Catal. B-Environ. 2015, 172, 27.
214 Zheng T. ; Xu J. ; Zhang Z. ; Zeng H. Mater. Lett. 2016, 164, 640.
doi: 10.1016/j.matlet.2015.11.089
215 Zhong S. ; Zhang F. ; Yu B. ; Zhao P. ; Jia L. ; Zhang S. J. Mater. Sci.-Mater. El. 2016, 27, 3011.
doi: 10.1007/s10854-015-4123-8
216 Li Y. Q. ; Wang Z. Y. ; Huang B. B. ; Dai Y. ; Zhang X. Y. ; Qin X. Y. Appl. Surf. Sci. 2015, 347, 258.
doi: 10.1016/j.apsusc.2015.04.105
217 Gong J. ; Fang T. ; Peng D. ; Li A. ; Zhang L. Biosens. Bioelectron 2015, 73, 256.
doi: 10.1016/j.bios.2015.06.008
218 Wang Y. ; Deng K. ; Zhang L. J. Phys. Chem. C 2011, 115, 14300.
219 Sha Z. ; Sun J. L. ; Chan H. ; Jaenicke S. ; Wu J. S. RSC Adv 2014, 4, 64977.
doi: 10.1039/C4RA13000F
220 Wang H. ; Liu L. ; Wang Y. ; Lin S. ; An W. ; Cui W. ; Liang Y. Mater. Lett. 2015, 160, 351.
doi: 10.1016/j.matlet.2015.07.123
221 Luo Y. D. ; Huang Q. Q. ; Li B. ; Dong L. H. ; Fan M. G. ; Zhang F. Y. Appl. Surf. Sci. 2015, 357, 1072.
doi: 10.1016/j.apsusc.2015.09.126
222 Yang Z. R. ; Peng J. T. ; Han Y. Q. ; Wang F. ; Liu Q. ; Zhang Y. ; Min S. X. Acta Phys. -Chim. Sin. 2013, 29, 813.
杨自嵘; 彭杰庭; 韩玉琦; 王芳; 刘倩; 张扬; 敏世雄. 物理化学学报, 2013, 29, 813.
223 Aguilera-Ruiz E. ; Garcia-Perez U. M. ; de la Garza-Galvan M. ; Zambrano-Robledo P. ; Bermudez-Reyes B. ; Peral J. Appl. Surf. Sci. 2015, 328, 361.
doi: 10.1016/j.apsusc.2014.12.059
224 Cao C. H. ; Xiao L. ; Chen C. H. ; Cao Q. H. Appl. Surf. Sci. 2015, 357, 1171.
doi: 10.1016/j.apsusc.2015.09.121
225 Cui W. ; An W. ; Liu L. ; Hu J. ; Liang Y. J. Hazard. Mater. 2014, 280, 417.
doi: 10.1016/j.jhazmat.2014.08.032
226 Zhao W. R. ; Zeng W. Y. ; Xi H. P. ; Yu X. X. Acta Phys. -Chim. Sin. 2014, 30, 761.
赵伟荣; 曾婉昀; 奚海萍; 余纤纤. 物理化学学报, 2014, 30, 761.
227 Di J. ; Xia J. ; Yin S. ; Xu H. ; Xu L. ; Xu Y. ; He M. ; Li H. RSC Adv 2014, 4, 14281.
doi: 10.1039/c3ra45670f
228 Guo S. ; Li X. ; Wang H. ; Dong F. ; Wu Z. J. Colloid Interface Sci. 2012, 369, 373.
doi: 10.1016/j.jcis.2011.12.007
229 Liu Z. ; Wu B. ; Zhu Y. ; Yin D. ; Wang L. Catal. Lett. 2012, 142, 1489.
doi: 10.1007/s10562-012-0899-9
230 Ragsdale W. ; Gupta S. ; Conard K. ; Delacruz S. ; Subramanian V. R. Appl. Catal. B-Environ. 2016, 180, 442.
doi: 10.1016/j.apcatb.2015.06.016
231 Wu Q. ; Feng Y. ; Zhang G. ; Sun Y. ; Xu Y. ; Gao D. Mater. Res. Bull. 2014, 49, 440.
doi: 10.1016/j.materresbull.2013.09.031
232 Cai P. ; Zhou S. ; Ma D. ; Liu S. ; Chen W. ; Huang S. Nano- Micro. Lett 2015, 7, 183.
doi: 10.1007/s40820-015-0033-9
233 Li J. Z. ; Zhong J. B. ; He X. Y. ; Huang S. T. ; Zeng J. ; He J.J. ; Shi W. L. Appl. Surf. Sci. 2013, 284, 527.
doi: 10.1016/j.apsusc.2013.07.128
234 Guo C. S. ; He Y. ; Du P. ; Zhao X. ; Lv J. P. ; Meng W. ; Zhang Y. ; Xu J. Appl. Surf. Sci. 2014, 320, 383.
doi: 10.1016/j.apsusc.2014.09.111
235 Li X.W. ; Niu C. G. ; Huang D.W. ; Wang X. Y. ; Zhang X.G. ; Zeng G. M. ; Niu Q. Y. Appl. Surf. Sci. 2013, 286, 40.
doi: 10.1016/j.apsusc.2013.08.139
236 Gupta S. ; De Leon L. ; Subramanian V. R. Phys. Chem. Chem. Phys. 2014, 16, 12719.
doi: 10.1039/C3CP55439B
237 Pilli S. K. ; Deutsch T. G. ; Furtak T. E. ; Turner J. A. ; Brown L. D. ; Herring A. M. Phys. Chem. Chem. Phys. 2012, 14, 7032.
doi: 10.1039/c2cp40673j
238 Feng Y. ; Yan X. ; Liu C. B. ; Hong Y. Z. ; Zhu L. ; Zhou M.J. ; Shi W. D. Appl. Surf. Sci. 2015, 353, 87.
doi: 10.1016/j.apsusc.2015.06.061
239 Liu X. ; Zhou M. ; Yao G. ; Shi W. ; Ma C. ; Lv P. ; Tang Y. ; Yan Y. RSC Adv 2014, 4, 18264.
doi: 10.1039/c3ra46590j
240 Liu Z. S. ; Wu B. T. ; Zhu Y. B. ; Wang F. ; Wang L. G. J. Colloid Interface Sci. 2013, 392, 337.
doi: 10.1016/j.jcis.2012.09.062
241 Srinivasan N. ; Sakai E. ; Miyauchi M. ACS Catal 2016, 6, 2197.
doi: 10.1021/acscatal.6b00267
242 Li X. J. ; Sheng J. Y. ; Cheng H. H. ; Xu Y. M. Acta Phys. -Chim. Sin. 2015, 31, 540.
李晓金; 盛珈怡; 陈海航; 许宜铭. 物理化学学报, 2015, 31, 540.
243 Hu J. ; Xu G. ; Wang J. ; Lv J. ; Zhang X. ; Xie T. ; Zheng Z. ; Wu Y. Dalton T 2015, 44, 5386.
doi: 10.1039/C4DT03953J
244 Han S. Q. ; Li J. ; Yang K. L. ; Lin J. Chin. J. Catal 2015, 36, 2119.
doi: 10.1016/S1872-2067(15)60974-3
245 Jiang S. H. ; Zhou K. Q. ; Shi Y. Q. ; Lo S. M. ; Xu H. Y. ; Hu Y. ; Gui Z. Appl. Surf. Sci. 2014, 290, 313.
doi: 10.1016/j.apsusc.2013.11.074
246 Cui Y. M. ; Jia Q. F. ; Li H. Q. ; Han J. Y. ; Zhu L. J. ; Li S. G. ; Zou Y. ; Yang J. Appl. Surf. Sci. 2014, 290, 233.
doi: 10.1016/j.apsusc.2013.11.055
247 Fang M. ; Jia H. ; He W. ; Lei Y. ; Zhang L. ; Zheng Z. Phys. Chem. Chem. Phys. 2015, 17, 13531.
doi: 10.1039/C4CP05749J
248 Cui Y. ; Yang L. ; Zhang G. ; Feng Y. Catal. Commun 2015, 59, 83.
doi: 10.1016/j.catcom.2014.10.001
249 An W. J. ; Cui W. Q. ; Liang Y. H. ; Hu J. S. ; Liu L. Appl. Surf. Sci. 2015, 351, 1131.
doi: 10.1016/j.apsusc.2015.06.098
250 Chen F. ; Niu C. ; Yang Q. ; Li X. ; Zeng G. Ceram. Int. 2016, 42, 2515.
doi: 10.1016/j.ceramint.2015.10.053
251 Ma Y. C. ; Chen Z.W. ; Qu D. ; Shi J. S. Appl. Surf. Sci. 2016, 361, 63.
doi: 10.1016/j.apsusc.2015.11.130
252 Cui Z. ; Zeng D. ; Tang T. ; Liu J. ; Xie C. J. Hazard. Mater. 2010, 183, 211.
doi: 10.1016/j.jhazmat.2010.07.013
253 Yan Y. ; Wu Y. ; Yan Y. ; Guan W. ; Shi W. J. Phys. Chem. C 2013, 117, 20017.
doi: 10.1021/jp406574y
254 Hu J. ; Xu G. ; Wang J. ; Lv J. ; Zhang X. ; Zheng Z. ; Xie T. ; Wu Y. New J. Chem. 2014, 38, 4913.
255 Chen D. ; Zhang M. ; Lu Q. ; Chen J. ; Liu B. ; Wang Z. J. Alloy. Compd 2015, 646, 647.
doi: 10.1016/j.jallcom.2015.06.113
256 Weng S. X. ; Chen B. B. ; Xie L. Y. ; Zheng Z. Y. ; Liu P. J. Mater. Chem. A 2013, 1, 3068.
doi: 10.1039/c2ta01004f
257 Li J. ; Liu X. ; Pan L. ; Qin W. ; Sun Z. RSC Adv 2014, 4, 62387.
258 Zhao Z.W. ; Zhang W. D. ; Sun Y. J. ; Yu J. Y. ; Zhang Y. X. ; Wang H. ; Dong F. ; Wu Z. B. J. Phys. Chem. C 2016, 120, 11889.
doi: 10.1021/acs.jpcc.6b01188
259 Sun Y. ; Zhao Z. ; Dong F. ; Zhang W. Phys. Chem. Chem. Phys. 2015, 17, 10383.
doi: 10.1039/C4CP06045H
260 Dong F. ; Li Q. ; Sun Y. ; Ho W. ACS Catal 2014, 4, 4341.
doi: 10.1021/cs501038q
261 Yu S. ; Huang H. ; Dong F. ; Li M. ; Tian N. ; Zhang T. ; Zhang Y. ACS Appl. Mater. Interfaces 2015, 7, 27925.
doi: 10.1021/acsami.5b09994
262 Chang C. ; Zhu L. ; Fu Y. ; Chu X. Chem. Eng. J. 2013, 233, 305.
doi: 10.1016/j.cej.2013.08.048
263 Lu S. ; Yu Y. ; Bao S. ; Liao S. RSC Adv 2015, 5, 85500.
doi: 10.1039/C5RA15406E
264 Etacheri V. ; Di Valentin C. ; Schneider J. ; Bahnemann D. ; Pillai S. C. J. Photochem. Photobiol. C 2015, 25, 1.
doi: 10.1016/j.jphotochemrev.2015.08.003
265 Li Q. ; Li X. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. G. Adv. Energy Mater 2015, 5, 1500010.
doi: 10.1002/aenm.201500010
266 He R. A. ; Cao S.W. ; Guo D. P. ; Cheng B. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. G. Ceram. Int. 2015, 41, 3511.
doi: 10.1016/j.ceramint.2014.11.003
267 Yu H. G. ; Chen F. Y. ; Chen F. ; Wang X. F. Appl. Surf. Sci. 2015, 358, 385.
doi: 10.1016/j.apsusc.2015.06.074
268 Ma Y. N. ; Liu E. Z. ; Hu X. Y. ; Tang C. N. ; Wan J. ; Li J. ; Fan J. Appl. Surf. Sci. 2015, 358, 246.
doi: 10.1016/j.apsusc.2015.08.174
269 Kuang P. Y. ; Su Y. Z. ; Chen G. F. ; Luo Z. ; Xing S. Y. ; Li N. ; Liu Z. Q. Appl. Surf. Sci. 2015, 358, 296.
doi: 10.1016/j.apsusc.2015.08.066
270 Miao R. ; Luo Z. ; Zhong W. ; Chen S. Y. ; Jiang T. ; Dutta B. ; Nasr Y. ; Zhang Y. S. ; Suib S. L. Appl. Catal. B-Environ. 2016, 189, 26.
doi: 10.1016/j.apcatb.2016.01.070
271 Li Q. ; Cui C. ; Meng H. ; Yu J. G. Chem.-Asian J 2014, 9, 1766.
doi: 10.1002/asia.v9.7
272 Zhang H. C. ; Huang H. ; Ming H. ; Li H. T. ; Zhang L. L. ; Liu Y. ; Kang Z. H. J. Mater. Chem. 2012, 22, 10501.
doi: 10.1039/c2jm30703k
273 Li K. ; Su F. Y. ; Zhang W. D. Appl. Surf. Sci. 2016, 375, 110.
doi: 10.1016/j.apsusc.2016.03.025
274 Zhou L. ; Zhang L. M. ; Liao L. ; Yang M. M. ; Xie Q. ; Liu Z.F. ; Peng H. L. ; Liu Z. R. Acta Chim. Sin 2014, 72, 289.
doi: 10.6023/A13080906
周琳; 张黎明; 廖磊; 杨明媚; 谢芹; 刘忠范; 彭海琳; 刘志荣. 化学学报, 2014, 72, 289.
doi: 10.6023/A13080906
275 Putri L. K. ; Ong W. J. ; Chang W. S. ; Chai S. P. Appl. Surf. Sci. 2015, 358, 2.
doi: 10.1016/j.apsusc.2015.08.177
276 Qu A. L. ; Xie H. L. ; Xu X. M. ; Zhang Y. Y. ; Wen S.W. ; Cui Y. F. Appl. Surf. Sci. 2016, 375, 230.
doi: 10.1016/j.apsusc.2016.03.077
277 Ma Z. J. ; Sa R. J. ; Li Q. H. ; Wu K. C. Phys. Chem. Chem. Phys. 2016, 18, 1050.
doi: 10.1039/C5CP05847C
278 Roushani M. ; Mavaei M. ; Rajabi H. R. J. Mol. Catal. AChem. 2015, 409, 102.
doi: 10.1016/j.molcata.2015.08.011
279 Wei S. ; Zhang R. ; Liu Y. ; Ding H. ; Zhang Y. L. Catal. Commun 2016, 74, 104.
doi: 10.1016/j.catcom.2015.11.010
280 Yeh T. F. ; Chen S. J. ; Teng H. S. Nano Energy 2015, 12, 476.
doi: 10.1016/j.nanoen.2015.01.021
281 Hummers W. S. ; Offeman R. E. J. Am. Chem. Soc 1958, 80, 1339.
doi: 10.1021/ja01539a017
282 Choi W. ; Termin A. ; Hoffmann M. R. J. Phys. Chem 1994, 98, 13669.
doi: 10.1021/j100102a038
283 Zhu J. ; Zheng W. ; He B. ; Zhang J. ; Anpo M. J. Mol. Catal. A-Chem. 2004, 216, 35.
doi: 10.1016/j.molcata.2004.01.008
284 Wang Q. ; Jiao D. ; Bai Y. ; Zhong J. ; Zhao L. ; Yong X. ; Tong J. ; Li J. Mater. Lett. 2015, 161, 267.
doi: 10.1016/j.matlet.2015.08.111
285 Jin J. ; Yu J. G. ; Guo D. P. ; Cui C. ; Ho W. K. Small 2015, 11, 5262.
doi: 10.1002/smll.201500926
286 Liu X. ; Zeng J. ; Zhong J. ; Li J. Appl. Phys. A 2015, 120, 977.
doi: 10.1007/s00339-015-9264-3
287 Su D. ; Di F. ; Xing J. ; Che J. F. ; Xiao Y. H. Prog. Chem. 2014, 26, 1962.
宿丹; 第凤; 邢季; 车剑飞; 肖迎红. 化学进展, 2014, 26, 1962.
288 Zheng T. ; Xu J. ; Zhang Z. ; Zeng H. RSC Adv 2015, 5, 99658.
doi: 10.1039/C5RA18301D
289 Balint R. ; Cassidy N. J. ; Cartmell S. H. Acta Biomater 2014, 10, 2341.
doi: 10.1016/j.actbio.2014.02.015
290 Dallas P. ; Georgakilas V. Adv. Colloid Interface 2015, 224, 46.
doi: 10.1016/j.cis.2015.07.008
291 Wang Z. ; Bai F. ; Wang X. ; Shang D. ; Xing Y. Spectrochim. Acta A 2016, 163, 73.
doi: 10.1016/j.saa.2016.03.020
292 Dresselhaus M. S. ; Lin Y. M. ; Rabin O. ; Jorio A. ; Souza A.G. ; Pimenta M. A. ; Saito R. ; Samsonidze G. G. ; Dresselhaus G. Mat. Sci. Eng. 2003, 23, 129.
doi: 10.1016/S0928-4931(02)00240-0
293 Dong F. ; Xiong T. ; Sun Y. ; Zhao Z. ; Zhou Y. ; Feng X. ; Wu Z. Chem. Commun. 2014, 50, 10386.
doi: 10.1039/C4CC02724H
294 Zhang Q. ; Zhou Y. ; Wang F. ; Dong F. ; Li W. ; Li H. ; Patzke G. R. J. Mater. Chem. A 2014, 2, 11065.
doi: 10.1039/c4ta01339e
295 Ma D. ; Zhao Y. ; Zhao J. ; Li Y. ; Lu Y. ; Zhao D. Superlattice Microst. 2015, 83, 411.
doi: 10.1016/j.spmi.2015.03.052
296 Gao F. ; Zhao Y. ; Li Y. ; Wu G. ; Lu W. Y. ; Song Y. ; Huang Z. ; Li N. ; Zhao J. J. Colloid Interface Sci. 2015, 448, 564.
doi: 10.1016/j.jcis.2015.02.056
297 Ma H. C. ; Zhao M. ; Xing H. M. ; Fu Y. H. ; Zhang X. F. ; Dong X. L. J. Mater. Sci.-Mater. El. 2015, 26, 10002.
doi: 10.1007/s10854-015-3680-1
298 Zhang X. ; Zhang L. ; Hu J. S. ; Pan C. L. ; Hou C. M. Appl. Surf. Sci. 2015, 346, 33.
doi: 10.1016/j.apsusc.2015.03.104
299 Huang Y. ; Wang W. ; Zhang Q. ; Lee S. C. Sci. Rep-UK 2016, 6, 23435.
doi: 10.1038/srep23435
300 Liu X. L. ; Wang W. J. ; Liu Y. Y. ; Huang B. B. ; Dai Y. ; Qin X. Y. ; Zhang X. Y. RSC Adv 2015, 5, 55957.
doi: 10.1039/C5RA09070A
301 Cheng H. F. ; Huang B. B. ; Qin X. Y. ; Zhang X. Y. ; Dai Y. Chem. Commun. 2012, 48, 97.
doi: 10.1039/C1CC15487G
302 Cheng H. F. ; Wang W. J. ; Huang B. B. ; Wang Z. Y. ; Zhan J. ; Qin X. Y. ; Zhang X. Y. ; Dai Y. J. Mater. Chem. A 2013, 1, 7131.
doi: 10.1039/c3ta10849j
303 Cheng H. F. ; Huang B. B. ; Dai Y. ; Qin X. Y. ; Zhang X. Y. Langmuir 2010, 26, 6618.
doi: 10.1021/la903943s
304 Cheng H. F. ; Huang B. B. ; Wang P. ; Wang Z. Y. ; Lou Z. Z. ; Wang J. P. ; Qin X. Y. ; Zhang X. Y. ; Dai Y. Chem. Commun. 2011, 47, 7054.
doi: 10.1039/c1cc11525a
305 Wang J. ; Jiang W. J. ; Liu D. ; Wei Z. ; Zhu Y. F. Appl. Catal. B-Environ. 2015, 176, 306.
306 Huang Y. C. ; Li H. B. ; Balogun M. S. ; Liu W. Y. ; Tong Y.X. ; Lu X. H. ; Ji H. B. ACS Appl. Mater. Interfaces 2014, 6, 22920.
doi: 10.1021/am507641k
307 Jing T. ; Dai Y. ; Wei W. ; Ma X. ; Huang B. Phys. Chem. Chem. Phys. 2014, 16, 18596.
doi: 10.1039/C4CP01846J
308 Lai K. ; Wei W. ; Zhu Y. ; Guo M. ; Dai Y. ; Huang B. J. Solid State Chem. 2012, 187, 103.
doi: 10.1016/j.jssc.2012.01.004
309 Zhang Y. ; Guo Y. ; Duan H. ; Li H. ; Sun C. ; Liu H. Phys. Chem. Chem. Phys. 2014, 16, 24519.
doi: 10.1039/C4CP03795B
310 Sun Z. X. ; Yang Z. M. ; Liu H. F. ; Wang H. Q. ; Wu Z. B. Appl. Surf. Sci. 2014, 315, 360.
doi: 10.1016/j.apsusc.2014.07.153
311 Zhu Y. ; Ling Q. ; Liu Y. ; Wang H. ; Zhu Y. Appl. Catal. BEnviron. 2016, 187, 204.
doi: 10.1016/j.apcatb.2016.01.012
312 Singh A. P. ; Kodan N. ; Dey A. ; Krishnamurthy S. ; Mehta B. R. Int. J. Hydrog. Energy 2015, 40, 4311.
doi: 10.1016/j.ijhydene.2015.01.085
[1] 卢秀利,韩莹莹,鲁统部. 石墨炔结构表征及在光电催化反应中的应用[J]. 物理化学学报, 2018, 34(9): 1014-1028.
[2] 程晓蒙,焦东霞,梁志豪,魏金金,李宏平,杨俊佼. 聚苯乙烯-聚4-乙烯基吡啶两亲嵌段共聚物在CO2膨胀液体中的组装行为[J]. 物理化学学报, 2018, 34(8): 945-951.
[3] 李少海,翁波,卢康强,徐艺军. 聚胺界面修饰改善碳量子点可见光光敏化性能[J]. 物理化学学报, 2018, 34(6): 708-718.
[4] 杜新华,李阳,殷辉,向全军. Au/TiO2/MoS2等离子体复合光催化剂的制备及其增强光催化产氢活性[J]. 物理化学学报, 2018, 34(4): 414-423.
[5] 韩杰,梁秋菊,曲轶,刘剑刚,韩艳春. 基于苝二酰亚胺类非富勒烯受体共混体系凝聚态结构调控[J]. 物理化学学报, 2018, 34(4): 391-406.
[6] 周亮,张雪华,林琳,李盼,邵坤娟,李春忠,贺涛. 无模板法水热合成CoTe及其可见光光催化还原CO2性能[J]. 物理化学学报, 2017, 33(9): 1884-1890.
[7] 宋春冬,张静,高莹,卢圆圆,王芳芳. 基于单质法合成直接Z型CuS-WO3及光催化性能[J]. 物理化学学报, 2017, 33(9): 1891-1897.
[8] 程若霖,金锡雄,樊向前,王敏,田建建,张玲霞,施剑林. 氮掺杂还原氧化石墨烯与吡啶共聚g-C3N4复合光催化剂及其增强的产氢活性[J]. 物理化学学报, 2017, 33(7): 1436-1445.
[9] 黄学辉,商晓辉,牛鹏举. SBA-15表面改性及其对介孔La0.8Sr0.2CoO3钙钛矿型催化剂结构和性能的影响[J]. 物理化学学报, 2017, 33(7): 1462-1473.
[10] 张驰,吴志娇,刘建军,朴玲钰. MoS2/TiO2复合催化剂的制备及其在紫外光下的光催化制氢活性[J]. 物理化学学报, 2017, 33(7): 1492-1498.
[11] 黄于芬,张海龙,杨铮铮,赵明,黄木兰,梁艳丽,王健礼,陈耀强. CeO2的添加对柴油车氧化催化剂Pt/SiO2-Al2O3的NO氧化性能提高的影响[J]. 物理化学学报, 2017, 33(6): 1242-1252.
[12] 李蛟,陈忠. Ag3XO4(X = P,As,V)电子结构及光催化性质的第一性原理计算[J]. 物理化学学报, 2017, 33(5): 941-948.
[13] 阮毛毛,宋乐新,王青山,夏娟,杨尊,滕越,许哲远. 纳米片自组装的(BiO)2CO3单分散微米绒球的绿色可控合成及其光催化性能[J]. 物理化学学报, 2017, 33(5): 1033-1042.
[14] 胡海龙,王晟,侯美顺,刘福生,王田珍,李天龙,董乾乾,张鑫. 水热法制备p-CoFe2O4/n-CdS及其光催化制氢性能[J]. 物理化学学报, 2017, 33(3): 590-601.
[15] 白金,陈鑫,奚兆毅,王翔,李强,胡绍争. 溶剂热后处理对石墨相氮化碳光化学固氮产氨性能的影响[J]. 物理化学学报, 2017, 33(3): 611-619.