Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (3): 464-475    DOI: 10.3866/PKU.WHXB201611152
专论     
液态金属催化剂:二维材料的点金石
曾梦琪,张涛,谭丽芳,付磊*
Liquid Metal Catalyst: Philosopher's Stone of Two-Dimensional Materials
Meng-Qi ZENG,Tao ZHANG,Li-Fang TAN,Lei FU*
 全文: PDF(4734 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

由于石墨烯等二维材料具有独特的结构与优异的性能,其在众多新型电子器件的构建中具有重要的应用前景。然而,其可控生长仍然存在诸多挑战性的问题,这也是制约这类明星材料真正迈向应用的瓶颈所在。化学气相沉积法(CVD)是目前可控制备高质量石墨烯最有效的方法,其中催化基底的设计尤为重要,这将直接决定CVD最为核心的两个过程:催化和传质。相较于改变催化剂的化学组成,近年来我们发现改变催化剂的物态--由固态到液态,对石墨烯等二维材料的CVD过程有质的改变和提升。与固态基底相比,液态基底具有更松散的原子排列、更剧烈的原子迁移,使得液面平滑而各向同性,液相可流动且可包埋异质原子。这使得液态金属在催化石墨烯等二维材料及其异质结生长时表现出很多独特的行为,比如层数严格自限制、超快的生长速度、晶粒拼接平滑等。更重要的是,基底的液态特性给二维材料的自组装和转移带来了突破,实乃二维材料的点金石。本文将梳理液态金属催化剂上二维材料的生长、组装与转移行为,这些关键技术的突破将为二维材料迈向真正应用奠定坚实的基础。

关键词: 液态金属二维材料生长组装转移    
Abstract:

Graphene and graphene-like two-dimensional (2D) materials exhibit broad prospects for application in emerging electronics owing to their unique structure and excellent properties. However, there are still many challenges facing the achievement of controllable growth, which is the main bottleneck that limits the practical application of these materials. Chemical vapor deposition (CVD) is the most effective method for the controllable growth of high-quality graphene, in which the design of the catalytic substrate catches the most attention because it directly determines the two most significant basal processes--catalyzation and mass transfer. Recently, compared with the selection of the chemical composition of the catalyst, the change of the physical state of the catalyst from a solid phase to liquid phase is expected to lead to a qualitative change and improvement in the CVD of graphene and graphene-like two-dimensional materials. Unlike solid substrates, liquid substrates exhibit a loose atomic arrangement and intense atom movement, which contribute to a smooth and isotropic liquid surface and a fluidic liquid phase that can embed heteroatoms. Therefore, liquid metal shows many unique behaviors during the catalyzation of the growth of graphene, graphene-like two dimensional materials, and their heterostructures, such as strict self-limitation, ultra-fast growth, and smooth stitching of grains. More importantly, the rheological properties of a liquid substrate can even facilitate the self-assembly and transfer of 2D materials grown on it, in which the liquid metal substrate can be regarded as the 'philosopher's stone'. This feature article summarizes the growth, assembly, and transfer behavior of 2D materials on liquid metal catalysts. These primary technology developments will establish a solid foundation for the practical application of 2D materials.

Key words: Liquid metal    Two-dimensional material    Growth    Assembly    Transfer
收稿日期: 2016-10-10 出版日期: 2016-11-15
中图分类号:  O647  
基金资助: 国家自然科学基金(51322209);国家自然科学基金(21473124);国家自然科学基金(21673161)
通讯作者: 付磊   
作者简介: 曾梦琪, 1991年出生。2009-2013年本科就读于武汉大学化学与分子科学学院,现为武汉大学博士研究生。主要研究方向为液态金属催化剂上石墨烯的可控生长与转移|张涛, 1991年出生。2010-2014年本科就读于武汉大学化学与分子科学学院,现为武汉大学博士研究生。主要研究方向为二维材料及其异质结的可控制备|谭丽芳, 1989年出生。2007-2011年本科就读于湖北大学化学化工学院,现为武汉大学博士研究生。主要研究方向为绝缘基底上石墨烯的可控生长与应用|付磊, 2001年于武汉大学化学与分子科学学院获得学士学位, 2006年于中国科学院化学研究所获得博士学位。2006年加入美国洛斯阿拉莫斯国家实验室开始独立从事研究工作, 2007年-2011年任北京大学副研究员, 2011年至今任武汉大学化学与分子科学学院教授、博士生导师。主要研究方向为二维材料的可控生长及其在能源领域的应用
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾梦琪
张涛
谭丽芳
付磊

引用本文:

曾梦琪,张涛,谭丽芳,付磊. 液态金属催化剂:二维材料的点金石[J]. 物理化学学报, 2017, 33(3): 464-475.

Meng-Qi ZENG,Tao ZHANG,Li-Fang TAN,Lei FU. Liquid Metal Catalyst: Philosopher's Stone of Two-Dimensional Materials. Acta Phys. -Chim. Sin., 2017, 33(3): 464-475.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201611152        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I3/464

图1  液态金属Ga上石墨烯的生长与转移15 Schematic illustrates graphene growth and transfer over liquid Ga supported on a W substrate.
图2  液态金属Ga上生长的石墨烯的表征15 (a) graphene film transferred onto a SiO2/Si substrate; (b) optical image of the transferred graphene on a SiO2/Si substrate; (c) Raman spectrum of the single-layer graphene; (d) HRTEM image and the selected-area electron diffraction pattern of the single-layer graphene and (e) a false 3D image originated from Fourier enhanced TEM micrograph; (f) the typical transfer characteristic of the fabricated FET based on the graphene grown on liquid Ga, the Ids means the drain-source current and the Vgs means the gate-source voltage.
图3  液态金属基底上生长严格单层石墨烯的机理29 Schematic illustrates the carbon distribution in liquid Cu, solid Cu, and the solidified surface of liquid Cu during the phase transition.
图4  液态金属辅助在绝缘基底上自限制生长均匀层数石墨烯31 (a) schematic drawing of Ga vapor-assisted CVD directly grown graphene on a quartz substrate; (b) optical microscope image of the uniform graphene film transferred onto SiO2/Si; (c) photograph of the grown graphene film on quartz substrate; (d) Raman mapping result acquired from the dotted area in (c) revealed the uniformity of graphene
图5  液态合金基底上石墨烯的低温生长34 (a) schematic illustration of graphene growth over liquid alloy; (b-e) typical OM (optical microscopy) images of graphene films grown on gallium covered iron (or cobalt or nickel) foils under different growth conditions; (f) X-ray photoelectron spectroscopy (XPS) analyses of C 1s peaks from surface and bulk on Ga-Ni after the graphene growth; (e) XPS composition profiles of elements along the surface normal direction on Ga-Ni foil
图6  液态抗硫化合金基底上MoS2/h-BN异质结的生长及表征35 (a) schematic showing the preparation of TMDCs/h-BN (transition metal dichalcogenides/hexagonal boron nitride) heterostructures; (b) TEM characterizations of MoS2/h-BN heterostructures. Inset shows SAED patterns corresponding to the heterostructures; (c) SEM image of the directly grown single-crystal MoS2 on h-BN. Inset shows MoS2 crystal with grain size up to 200 μm2; (d) electrical properties of Ids-Vgs curves for the FET devices made on MoS2/h-BN heterostructures. Inset shows optical image of the device.
图7  液态Au法共生生长100%重叠的ReS2/WS2面间异质结及其表征37 (a) schematic for the twinned growth of vertically stacked ReS2/WS2 heterostructures; (b) typical OM of a ReS2/WS2 twinned vertical heterostructure crystal; (c, d) Raman mappings of peak intensity at 160.5 and 351.3 cm-1, respectively, corresponding to the E2g mode of ReS2 and WS2, respectively.
图8  液态Cu上石墨烯的各向同性生长及晶粒间的平滑拼接组装39 (a) scheme of the IGG (isotropic graphene grains) via isotropic growth on the liquid Cu; (b) typical STM image of the edge of an individual IGG; (c) atom images at the edge of the IGG and the simulative atom structures derived from the actual atom arrangements; (d) Raman mapping of I2D; (e) stitching process of two adjacent IGGs
图9  液态金属表面二维材料单晶的超有序自组装40, 41 (a) SEM image of the graphene super-ordered structure (GSOS); (b) statistical distribution about the deviation of size and distance of GSOS; (c) percentile curve and (inset) histograms of the rotation angle of GSOS; (d) SEM image of the h-BN self-aligned single crystal array (SASCA); (e) SEM image of the h-BN SASCA with snowflakes visualized by the surplus growth; (f) typical diagram of the size distribution of h-BN single-crystals
图10  液态金属上石墨烯的直接滑移转移42 (a) The scheme shows the sliding process; (b) a photograph of the equipment for sliding transfer; (c) TEM image of graphene transferred by traditional PMMA-assisted method; (d) TEM image of sliding transferred graphene; (e) AFM image of PMMA-assisted transferred graphene on SiO2/Si; (f) AFM image of sliding transferred graphene on SiO2/Si
1 Miro P. ; Audiffred M. ; Heine T. Chem. Soc. Rev. 2014, 43, 6537.
doi: 10.1039/c4cs00102h
2 Katsnelson M. I. Mater. Today 2017, 10, 20.
doi: 10.1016/S1369-7021(06)71788-6
3 Zhang Y. ; Tang T. T. ; Girit C. ; Hao Z. ; Martin M. C. ; Zettl A. ; Crommie M. F. ; Shen Y. R. ; Wang F. Nature 2009, 459, 820.
doi: 10.1038/nature08105
4 Ohta T. ; Bostwick A. ; Seyller T. ; Horn K. ; Rotenberg E. Science 2006, 313, 951.
doi: 10.1126/science.1130681
5 Geim A. K. ; Novoselov K. S. Nat. Mater. 2007, 6, 183.
doi: 10.1038/nmat1849
6 Craciun M. ; Russo S. ; Yamamoto M. ; Oostinga J. B. ; Morpurgo A. ; Tarucha S. Nat. Nanotechnol. 2009, 4, 383.
doi: 10.1038/nnano.2009.89
7 Yu Q. K. ; Jauregui L. A. ; Wu W. ; Colby R. ; Tian J. F. ; Su Z.H. ; Cao H. L. ; Liu Z. H. ; Pandey D. ; Wei D. G. ; Chung T. F. ; Peng P. ; Guisinger N. P. ; Stach E. A. ; Bao J. M. ; Pei S. S. ; Chen Y. P. Nat. Mater. 2011, 10, 443.
doi: 10.1038/nmat3010
8 Ferrari A. C. ; Bonaccorso F. ; Fal'ko V. ; et al Nanoscale 2015, 7, 4598.
doi: 10.1039/c4nr01600a
9 Reina A. ; Jia X. ; Ho J. ; Nezich D. ; Son H. ; Bulovic V. ; Dresselhaus M. S. ; Kong J. Nano Lett. 2009, 9, 30.
doi: 10.1021/nl801827v
10 Liu N. ; Fu L. ; Dai B. Y. ; Yan K. ; Liu X. ; Zhao R. Q. ; Zhang Y. F. ; Liu Z. F. Nano Lett. 2011, 11, 297.
doi: 10.1021/nl103962a
11 Xue Y. Z. ; Wu B. ; Guo Y. L. ; Huang L. P. ; Jiang L. ; Chen J.Y. ; Geng D. C. ; Liu Y. Q. ; Hu W. P. ; Yu G. Nano Res. 2011, 4, 1208.
doi: 10.1007/s12274-011-0171-4
12 Gall N. R. ; Rut'kov E. V. ; Tontegode A. Y. Phys. Solid State 2004, 46, 371.
doi: 10.1134/1.1649439
13 Li X. S. ; Cai W.W. ; An J. H. ; Kim S. ; Nah J. ; Yang D. X. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. ; Banerjee S. K. ; Colombo L. ; Ruoff R. S. Science 2009, 324, 1312.
doi: 10.1126/science.1171245
14 Li X. S. ; Cai W.W. ; Colombo L. ; Ruoff R. S. Nano Lett. 2009, 9, 4268.
doi: 10.1021/nl902515k
15 Wang J. ; Zeng M. ; Tan L. ; Dai B. ; Deng Y. ; Rümmeli M. ; Xu H. ; Li Z. ; Wang S. ; Peng L. ; Eckert J. ; Fu L. Sci. Rep. 2013, 3, 2670.
doi: 10.1038/srep02670
16 Liu X. ; Fu L. ; Liu N. ; Gao T. ; Zhang Y. ; Liao L. ; Liu Z. J. Phys. Chem. C 2011, 115, 11976.
doi: 10.1021/jp202933u
17 Wu Y. ; Chou H. ; Ji H. ; Wu Q. ; Chen S. ; Jiang W. ; Hao Y. ; Kang J. ; Ren Y. ; Piner R. D. ; Ruoff R. S. ACS Nano 2012, 6, 7731.
doi: 10.1021/nn301689m
18 Weatherup R. S. ; Bayer B. C. ; Blume R. ; Ducati C. ; Baehtz C. ; Schl?gl R. ; Hofmann S. Nano Lett. 2011, 11, 4154.
doi: 10.1021/nl202036y
19 Dai B. ; Fu L. ; Zou Z. ; Wang M. ; Xu H. ; Wang S. ; Liu Z. Nat. Commun. 2011, 2, 522.
doi: 10.1038/ncomms1539
20 Zou Z. Y. ; Fu L. ; Song X. J. ; Zhang Y. F. ; Liu Z. F. Nano Lett. 2014, 14, 3832.
doi: 10.1021/nl500994m
21 Geng D. C. ; Wu B. ; Guo Y. L. ; Huang L. P. ; Xue Y. Z. ; Chen J. Y. ; Yu G. ; Jiang L. ; Hu W. P. ; Liu Y. Q. Proc. Natl. Acad.Sci. U. S. A. 2012, 109, 7992.
doi: 10.1073/pnas.1200339109
22 Geng D. C. ; Wang H. P. ; Yu G. Adv. Mater. 2015, 27, 2821.
doi: 10.1002/adma.201405887
23 Luo Z. T. ; Lu Y. ; Singer D.W. ; Berck M. E. ; Somers L. A. ; Goldsmith B. R. ; Johnson A. T. C. Chem. Mater. 2011, 23, 1441.
doi: 10.1021/cm1028854
24 Gan L. ; Luo Z. T. ACS Nano 2013, 7, 9480.
doi: 10.1021/nn404393b
25 Jung D. H. ; Kang C. ; Kim M. ; Cheong H. ; Lee H. ; Lee J. S. J. Phys. Chem. C 2014, 118, 3574.
doi: 10.1021/jp410961m
26 Wang H. ; Xu X. ; Li J. ; Lin L. ; Sun L. ; Sun X. ; Zhao S. ; Tan C. ; Chen C. ; Dang W. ; Ren H. ; Zhang J. ; Deng B. ; Koh A. L. ; Liao L. ; Kang N. ; Chen Y. ; Xu H. ; Ding F. ; Liu K. ; Peng H. ; Liu Z. Adv. Mater. 2016, 28, 8968.
doi: 10.1002/adma.201603579
27 Zhang Y. ; Gomez L. ; Ishikawa F. N. ; Madaria A. ; Ryu K. ; Wang C. ; Badmaev A. ; Zhou C. J. Phys. Chem. Lett. 2010, 1, 3101.
doi: 10.1021/jz1011466
28 Ogawa Y. ; Hu B. S. ; Orofeo C. M. ; Tsuji M. ; Ikeda K. ; Mizuno S. ; Hibino H. ; Ago H. J. Phys. Chem. Lett. 2012, 3, 219.
doi: 10.1021/jz2015555
29 Zeng M. ; Tan L. ; Wang J. ; Chen L. ; Rümmeli M. H. ; Fu L. Chem. Mater. 2014, 26, 3637.
doi: 10.1021/cm501571h
30 Tan L. ; Zeng M. ; Zhang T. ; Fu L. Nanoscale 2015, 7, 9105.
doi: 10.1039/c5nr01420d
31 Tan L. ; Zeng M. ; Wu Q. ; Chen L. ; Wang J. ; Zhang T. ; Eckert J. ; Rümmeli M. H. ; Fu L. Small 2015, 11, 1840.
doi: 10.1002/smll.201402427
32 Liu J. ; Zeng M. ; Wang L. ; Chen Y. ; Xing Z. ; Zhang T. ; Liu Z. ; Zuo J. ; Nan F. ; Mendes R. G. ; Chen S. ; Ren F. ; Wang Q. ; Rümmeli M. H. ; Fu L. Small 2016, 12, 5741.
doi: 10.1002/smll.201601556
33 Wang J. ; Chen L. ; Wu N. ; Kong Z. ; Zeng M. ; Zhang T. ; Zhuang L. ; Fu L. Carbon 2016, 96, 799.
doi: 10.1016/j.carbon.2015.10.015
34 Chen L. ; Kong Z. ; Yue S. ; Liu J. ; Deng J. ; Xiao Y. ; Mendes R. G. ; Rümmeli M. H. ; Peng L. ; Fu L. Chem. Mater. 2015, 27, 8230.
doi: 10.1021/acs.chemmater.5b02788
35 Fu L. ; Sun Y. ; Wu N. ; Mendes R. G. ; Chen L. ; Xu Z. ; Zhang T. ; Rümmeli M. H. ; Rellinghaus B. ; Pohl D. ; Zhuang L. ; Fu L. ACS Nano 2016, 10, 2063.
doi: 10.1021/acsnano.5b06254
36 Wang S. S. ; Wang X. C. ; Warner J. H. ACS Nano 2015, 9, 5246.
doi: 10.1021/acsnano.5b00655
37 Zhang T. ; Jiang B. ; Xu Z. ; Mendes R. G. ; Xiao Y. ; Chen L.F. ; Fang L.W. ; Gemming T. ; Chen S. H. ; Rümmeli M. H. ; Fu L. Nat. Commun. 2016, 7, 13911.
doi: 10.1038/ncomms13911
38 Parviz B. A. ; Ryan D. ; Whitesides G. M. IEEE T. Adv.Packaging 2003, 26, 233.
doi: 10.1109/tadvp.2003.817971
39 Zeng M. ; Tan L. ; Wang L. ; Mendes R. G. ; Qin Z. ; Huang Y. ; Zhang T. ; Fang L. ; Zhang Y. ; Yue S. ; Rümmeli M. H. ; Peng L. ; Liu Z. ; Chen S. ; Fu L. ACS Nano 2016, 10, 7189.
doi: 10.1021/acsnano.6b03668
40 Zeng M. ; Wang L. ; Liu J. ; Zhang T. ; Xue H. ; Xiao Y. ; Qin Z. ; Fu L. J. Am. Chem. Soc. 2016, 138, 7812.
doi: 10.1021/jacs.6b03208
41 Tan L. ; Han J. ; Mendes R. G. ; Rümmeli M. H. ; Liu J. ; Wu Q. ; Leng X. ; Zhang T. ; Zeng M. ; Fu L. Adv. Electron. Mater. 2015, 1, 1500223.
doi: 10.1002/aelm.201500223
42 Lu W. ; Zeng M. ; Li X. ; Wang J. ; Tan L. ; Shao M. ; Han J. ; Wang S. ; Yue S. ; Zhang T. ; Hu X. ; Mendes R. G. ; Rümmeli M. H. ; Peng L. ; Liu Z. ; Fu L. Adv. Sci. 2016, 3, 1600006.
doi: 10.1002/advs.201600006
43 Xu X. ; Zhang Z. ; Qiu L. ; Zhuang J. ; Zhang L. ; Wang H. ; Liao C. ; Song H. ; Qiao R. ; Gao P. ; Hu Z. ; Liao L. ; Liao Z. ; Yu D. ; Wang E. ; Ding F. ; Peng H. ; Liu K. Nat. Nanotechnol. 2016, 11, 930.
doi: 10.1038/NNANO.2016.132
[1] 陈熙,张胜利. 基于3d元素掺杂的石墨二炔分子传感材料性能调控[J]. 物理化学学报, 2018, 34(9): 1061-1073.
[2] 赵亚松,张丽娟,齐健,金泉,林凯峰,王丹. 石墨二炔及其电子转移增强特性[J]. 物理化学学报, 2018, 34(9): 1048-1060.
[3] 程晓蒙,焦东霞,梁志豪,魏金金,李宏平,杨俊佼. 聚苯乙烯-聚4-乙烯基吡啶两亲嵌段共聚物在CO2膨胀液体中的组装行为[J]. 物理化学学报, 2018, 34(8): 945-951.
[4] 黄丽丽,邵翔. CO与蜜勒胺自组装膜协同作用制备Au单原子及多原子物种[J]. 物理化学学报, 2018, 34(12): 1390-1396.
[5] 李重杲,卢天,高恒,张庆,李敏杰,任伟,陆文聪. 苯并噻二唑衍生物作为铆接基团提高染料敏化太阳能电池效率[J]. 物理化学学报, 2017, 33(9): 1789-1795.
[6] 王琳, 肖立志, 郭龙, 廖广志, 张岩, 戈革. 纳米自组装γ-Al2O3孔隙结构的核磁共振表征[J]. 物理化学学报, 2017, 33(8): 1589-1598.
[7] 张洪芝,张志庆,王芳,周亭,王秀凤,张国栋,刘婷婷,刘淑贞. 结构DNA纳米技术应用新进展[J]. 物理化学学报, 2017, 33(8): 1520-1532.
[8] 鞠广凯,陶占良,陈军. α-MnO2纳米管自组装微球的可控制备及电化学性能[J]. 物理化学学报, 2017, 33(7): 1421-1428.
[9] 刘金,麦江泉,李诗,任召辉,李铭,武梦娇,吴勇军,路新慧,李翔,田鹤,王宗荣,韩高荣. 钙钛矿铁电纳米片诱导的P (VDF-TrFE)取向生长[J]. 物理化学学报, 2017, 33(6): 1261-1266.
[10] 凌崇益,王金兰. 基于类石墨烯二维材料的析氢反应电催化剂的研究进展[J]. 物理化学学报, 2017, 33(5): 869-885.
[11] 陈爱喜,汪宏,段赛,张海明,徐昕,迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.
[12] SCHLERETH Andrew,NOOMUNA Panae,GAO Pei. 应用纳米球刻蚀法在自组装膜修饰的硅表面生成中尺度的网状蛋白层[J]. 物理化学学报, 2017, 33(4): 810-815.
[13] 贺雷,张向倩,陆安慧. 二维炭基多孔材料的合成及应用[J]. 物理化学学报, 2017, 33(4): 709-728.
[14] 袁康,周雪,杜建忠. 基于多肽和温敏聚合物的光交联囊泡的制备及表征[J]. 物理化学学报, 2017, 33(4): 656-660.
[15] 郭瑞,张嘉霖,赵宋焘,余小江,钟舒,孙硕,李震宇,陈伟. 基于全氟酞菁铜和碗烯双分子体系在银和石墨表面自组装行为的低温扫描隧道显微镜研究[J]. 物理化学学报, 2017, 33(3): 627-632.