Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 1001-1009    DOI: 10.3866/PKU.WHXB201701131
论文     
基于色相算法的表面等离子体共振成像传感器对苯并芘的敏感特性
范智博1,3,龚晓庆1,3,逯丹凤1,高然1,祁志美1,2,*()
1 中国科学院电子学研究所,传感技术联合国家重点实验室,北京100190
2 国民核生化灾害防护国家重点实验室,北京102205
3 中国科学院大学,北京100049
Benzo[a]pyrene Sensing Properties of Surface Plasmon Resonance Imaging Sensor Based on the Hue Algorithm
Zhi-Bo FAN1,3,Xiao-Qing GONG1,3,Dan-Feng LU1,Ran GAO1,Zhi-Mei QI1,2,*()
1 State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
 全文: PDF(1316 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

报道了一种用于原位探测水中苯并芘的彩色表面等离子体共振成像(SPRI)传感器,该传感器既能提供直观的图像信息,又能借助色相算法定量分析待测物质的浓度及其吸附/脱附过程。首先利用自制的波长-图像同步检测型SPR传感器测试了裸金薄膜芯片在不同入射角下的共振波长和共振图像,然后利用色相算法建立了SPR共振波长与图像色相的依赖关系,基于该依赖关系获得了SPR传感器最佳色相灵敏度对应的起始共振波长约为650 nm;另一方面,制备了聚四氟乙烯涂覆的SPR传感芯片,基于聚四氟乙烯膜对水中苯并芘的可逆富集作用实现了苯并芘的原位快速探测。实验取得以下4个结果:(1)在20-100 nmol·L-1浓度范围内彩色SPR图像的平均色相值随着苯并芘浓度的升高线性减小;(2)对100 nmol·L-1的苯并芘的响应和恢复时间分别约为7和5 s;(3)由于聚四氟乙烯膜的厚度大于SPR消逝场穿透深度,检测结果不受溶液折射率影响;(4)在聚四氟乙烯敏感膜厚度较小且不均匀的情况下,传感器容许获取敏感膜的不同厚度区域对苯并芘的色相灵敏度。实验结果有力地证明了这种彩色SPR图像传感器在生化物质检测中具有良好的应用前景。

关键词: 彩色表面等离子体共振成像色相苯并芘聚四氟乙烯富集层原位检测    
Abstract:

A colorful surface plasmon resonance imaging sensor for the in-situ detection of benzopyrene (BaP) in water is presented in this paper. The sensor can provide intuitive image information and can also quantitatively analyze the concentration and adsorption/desorption processes of the analyte by combining the hue algorithm. Both the resonance wavelengths and resonance images for a bare gold film chip were obtained at different incident angles using a home-made surface plasmon resonance (SPR) sensor that possesses wavelength-interrogating and imaging capabilities. The relationship between the resonance wavelength and the average hue of the color image was established based on the hue algorithm. From this relationship, the initial resonance wavelength at which the SPR sensor can provide optimal hue sensitivity was derived, which was ~650 nm. Polytetrafluoroethylene (PTFE)-coated SPR sensor chips were prepared for the in-situ rapid detection of BaP in water based on the reversible enrichment of BaP molecules in the PTFE film. The results showed that: (1) the average hue of the SPR color image decreases linearly as BaP concentration increases from 20 to 100 nmol·L-1; (2) both the response time and recovery times of the SPR sensor for 100 nmol·L-1 BaP are 7 and 5 s, respectively; (3) since the thickness of the PTFE filmis greater than the penetration depth of the surface plasmon field, the BaP detection is not affected by the refractive index of the solution sample; and (4) in the case of a non-uniform PTFE film, the sensor allows to determine the hue sensitivities for equal-thickness microscale areas of the sensing film. The experimental results show that this type of colorful SPR imaging sensor has widespread applicability for chemical and biological detection.

Key words: Color surface plasmon resonance imaging    Hue    Benzo[a]pyrene    PTFE sensing film    In-situ detection
收稿日期: 2016-12-01 出版日期: 2017-01-13
中图分类号:  O647  
基金资助: 国家重点基础研究发展规划项目(973)(2015CB352100);国家自然科学基金(61377064);国家自然科学基金(61675203);中科院科研装备研制项目(YZ201508)
通讯作者: 祁志美     E-mail: zhimei-qi@mail.ie.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
范智博
龚晓庆
逯丹凤
高然
祁志美

引用本文:

范智博,龚晓庆,逯丹凤,高然,祁志美. 基于色相算法的表面等离子体共振成像传感器对苯并芘的敏感特性[J]. 物理化学学报, 2017, 33(5): 1001-1009.

Zhi-Bo FAN,Xiao-Qing GONG,Dan-Feng LU,Ran GAO,Zhi-Mei QI. Benzo[a]pyrene Sensing Properties of Surface Plasmon Resonance Imaging Sensor Based on the Hue Algorithm. Acta Physico-Chimica Sinca, 2017, 33(5): 1001-1009.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201701131        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I5/1001

图1  实验装置示意图
图2  (a)不同入射角度下的共振光谱;(b)不同共振光谱对应的SPR图像;(c)不同SPR图像对应的二维色相分布;(d)平均色相与共振波长的关系
图3  (a)外界环境分别为空气和水所对应的SPR图像及其二维色相分布;(b)外界环境分别为空气和水所对应的共振光谱
图4  (a)不同浓度苯并芘水溶液所对应的SPR图像及其二维色相分布;(b)平均色相与苯并芘水溶液浓度的关系
图5  (a)不同吸附时间对应的SPR图像及其二维色相分布;(b)平均色相与吸附时间的关系
图6  (a)不同脱附时间对应的SPR图像及其二维色相分布;(b)平均色相与脱附时间的关系
图7  (a)吸附苯并芘前所对应的SPR图像及其二维色相分布;(b)吸附苯并芘后所对应的SPR图像及其二维色相分布(插图:所选区域的放大图)
图8  (a)吸附苯并芘前后对应的共振光谱;(b)所选不同区域的平均色相变化的对比(共振波长变化同样在图中给出)
1 Martinez E. ; Gros M. ; Lacorte S. ; Barceló D. J. Chromatogr.A 2004, 1047 (2), 181.
doi: 10.1016/j.chroma.2004.07.003
2 Anastasio A. ; Mercogliano R. ; Vollano L. ; Pepe T. ; Cortesi M. L. J. Agric. Food Chem. 2004, 52 (14), 4452.
doi: 10.1021/jf049566n
3 Reeves W. R. ; Barhoumi R. ; Burghardt R. C. ; Lemke S. L. ; Mayura K. Environ. Sci. Technol. 2001, 35 (8), 1630.
doi: 10.1021/es001689a
4 Du C. ; Hu Y. ; Li Y. ; Li X. H. ; Fan L. Z. Talanta 2015, 138, 46.
doi: 10.1016/j.talanta.2015.02.005
5 Zhang Y. H. ; Su Q. ; Xu J. H. ; Zhang Y. ; Chen S. T. Int. J.Electrochem. Sci. 2014, 9 (7), 3736.
6 Wu D. Sci. Technol. Food Ind. 2008, 5, 309.
doi: 10.13386/j.issn1002-0306.2008.05.080
吴丹. 食品工业科技, 2008, 5, 309.
doi: 10.13386/j.issn1002-0306.2008.05.080
7 Perry M. B. ; Wehry E. L. ; Mamantov G. Anal. Chem. 1983, 55 (12), 1893.
doi: 10.1021/ac00262a013
8 Chiara C. ; Giorgia P. ; Lanfranco S. C. ; Sabrina M. J. Sep. Sci. 2015, 38 (10), 1749.
doi: 10.1002/jssc.201401246
9 Hilpert L. R. ; Byrd G. D. ; Vogt C. R. Anal. Chem. 1984, 56 (11), 1842.
doi: 10.1021/ac00275a019
10 Klimisch H. J. Anal. Chem. 2002, 45 (11), 210.
doi: 10.1021/ac60333a053
11 Fu S. ; Guo X. ; Wang H. ; Yang T. ; Wen Y. ; Yang H. Sens.Actuators B 2015, 212, 200.
doi: 10.1016/j.snb.2015.01.134
12 Yeatman E. ; Ash E. A. Electron. Lett 1987, 23 (20), 1091.
doi: 10.1049/el:19870762
13 Kodadek T. Chem. Biol. 2001, 8 (2), 105.
doi: 10.1016/S1074-5521(00)90067-X
14 Yuk J. S. ; Ha K. S. Exp. Mol. Med. 2005, 37 (1), 1.
doi: 10.1038/emm.2005.1
15 Mariani S. ; Minunni M. Anal. Bioanal. Chem. 2014, 406 (9-10), 2303.
doi: 10.1007/s00216-014-7647-5
16 Cetin A. E. ; Coskun A. F. ; Galarreta B. C. ; Huang M. ; Herman D. ; Ozcan A. ; Altug H. Light-Sci. Appl 2014, 3 (1), e122.
doi: 10.1038/lsa.2014.3
17 Piliarik M. ; Homola J. Sens. Actuators B 2008, 134 (2), 353.
doi: 10.1016/j.snb.2008.06.011
18 Yanase Y. ; Sakamoto K. ; Kobayashi K. Opt. Mater. Express 2016, 6 (4), 1339.
doi: 10.1364/OME.6.001339
19 Knobloch H. ; Woigk S. ; Helms A. ; Brehmer L. Appl. Phys.Lett. 1996, 69 (16), 2336.
doi: 10.1063/1.117516
20 Beusink J. B. ; Lokate A. M. ; Besselink G. A. ; Pruijn G. J. ; Schasfoort R. B. Biosens. Bioelectron. 2008, 23 (6), 839.
doi: 10.1016/j.bios.2007.08.025
21 Andersson O. ; Ulrich C. ; Bj?refors F. ; Liedberg B. Sens.Actuators B 2008, 134 (2), 545.
doi: 10.1016/j.snb.2008.05.042
22 Zhang P. ; Liu L. ; He Y. ; Shen Z. Y. ; Guo J. Appl. Opt. 2014, 53 (26), 6037.
doi: 10.1364/AO.53.006037
23 Shen, G. Y.; Chen, Y.; Zhang, Y. M.; Chen, Y.; Cui, J. Prog.Chem. 2010, 8, 1648.
申刚义,陈义,张轶鸣,崔箭.化学进展, 2010, 8, 1648.
24 Shen G. Y. ; Han Z. Q. ; Liu W. ; Chen Y. Chem. J. Chin. Univ. 2007, 28 (9), 1651.
doi: 10.3321/j.issn:0251-0790.2007.09.032
申刚义; 韩志强; 刘巍;陈义. 高等学校化学学报, 2007, 28 (9), 1651.
doi: 10.3321/j.issn:0251-0790.2007.09.032
25 Smith A. R. AcmSiggr. Comp. Graph. 1978, 12 (3), 12.
doi: 10.1145/965139.807361
26 Zhang Z. ; Liu J. ; Lu D. F. ; Qi Z. M. Acta. Phys.-Chim. Sin 2014, 30 (9), 1771.
doi: 10.3866/PKU.WHXB201407071
张喆; 刘杰; 逯丹凤; 祁志美. 物理化学学报, 2014, 30 (9), 1771.
doi: 10.3866/PKU.WHXB201407071
[1] 王丽,逯丹凤,高然,程进,张喆,祁志美. 纳米多孔金膜表面等离子体共振效应的理论分析和传感应用[J]. 物理化学学报, 2017, 33(6): 1223-1229.