Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 918-926    DOI: 10.3866/PKU.WHXB201701163
研究论文     
Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds
GOLMOHAMMADI Hassan1, DASHTBOZORGI Zahra2, KHOOSHECHIN Sajad2
1 Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran;
2 Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds
GOLMOHAMMADI Hassan1, DASHTBOZORGI Zahra2, KHOOSHECHIN Sajad2
1 Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran;
2 Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
 全文: PDF(1991 KB)   输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

The purpose of this paper is to present a novel way to building quantitative structure-propertyrelationship (QSPR) models for predicting the gas-to-benzene solvation enthalpy (ΔHSolv) of 158 organiccompounds based on molecular descriptors calculated from the structure alone. Different kinds of descriptorswere calculated for each compounds using dragon package. The variable selection technique of enhancedreplacement method (ERM) was employed to select optimal subset of descriptors. Our investigation revealsthat the dependence of physico-chemical properties on solvation enthalpy is a nonlinear observable fact andthat ERM method is unable to model the solvation enthalpy accurately. The standard error value of predictionset for support vector machine (SVM) is 1.681 kJ·mol-1 while it is 4.624 kJ·mol-1 for ERM. The resultsestablished that the calculated ΔHSolv values by SVM were in good agreement with the experimental ones, andthe performances of the SVM models were superior to those obtained by ERM one. This indicates that SVMcan be used as an alternative modeling tool for QSPR studies.

关键词: Quantitative structure-property relationshipGas-to-benzene solvation enthalpyDescriptorEnhanced replacement methodSupport vector machine    
Abstract:

The purpose of this paper is to present a novel way to building quantitative structure-propertyrelationship (QSPR) models for predicting the gas-to-benzene solvation enthalpy (ΔHSolv) of 158 organiccompounds based on molecular descriptors calculated from the structure alone. Different kinds of descriptorswere calculated for each compounds using dragon package. The variable selection technique of enhancedreplacement method (ERM) was employed to select optimal subset of descriptors. Our investigation revealsthat the dependence of physico-chemical properties on solvation enthalpy is a nonlinear observable fact andthat ERM method is unable to model the solvation enthalpy accurately. The standard error value of predictionset for support vector machine (SVM) is 1.681 kJ·mol-1 while it is 4.624 kJ·mol-1 for ERM. The resultsestablished that the calculated ΔHSolv values by SVM were in good agreement with the experimental ones, andthe performances of the SVM models were superior to those obtained by ERM one. This indicates that SVMcan be used as an alternative modeling tool for QSPR studies.

Key words: Quantitative structure-property relationship    Gas-to-benzene solvation enthalpy    Descriptor    Enhanced replacement method    Support vector machine
收稿日期: 2016-12-13 出版日期: 2017-01-16
通讯作者: GOLMOHAMMADI Hassan     E-mail: hassan.gol@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
GOLMOHAMMADI Hassan
DASHTBOZORGI Zahra
KHOOSHECHIN Sajad

引用本文:

GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds[J]. 物理化学学报, 2017, 33(5): 918-926.

GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds. Acta Phys. -Chim. Sin., 2017, 33(5): 918-926.

链接本文:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/10.3866/PKU.WHXB201701163        http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/Y2017/V33/I5/918

(1) Duffy, E. M.; Jorgensen, W. L. J. Am. Chem. Soc. 2000, 122, 2878. doi: 10.1021/ja993663t
(2) Cornell, W. E.; Cieplak, P.; Bayly, C. I.; Merz, K. M.; Ferguson, D. M.; Spellmayer, D. C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. J. Am. Chem. Soc. 1995, 117, 5179. doi: 10.1021/ja00124a002
(3) Graziano, G. Can. J. Chem. 2000, 78, 1233. doi: 10.1139/v00-125
(4) Graziano, G. Biophys. Chem. 1999, 82, 69. doi: 10.1016/S0301-4622(99)00063-0
(5) Graziano, G. J. Phys. Chem. B 2000, 104, 9249. doi: 10.1021/jp001461
(6) Garde, S.; Garcia, A. E.; Pratt, L. R.; Hummer, G. Biophys.Chem. 1999, 78, 21. doi: 10.1016/S0301-4622(99)00018-6
(7) Mintz, C.; Burton, K.; Acree, W. E., Jr.; Abraham, M. H. FluidPhase Equilibr. 2007, 258, 191. doi: 10.1016/j.fluid.2007.06.016
(8) Chickos, J. S.; Acr
(9) ee, W. E., Jr. J. Phys. Chem. Ref. Data 2003, 32, 519.doi: 10.1063/1.1529214
(10) Chickos, J. S.; Acree, W. E., Jr. J. Phys. Chem. Ref. Data 2002, 31, 537. doi: 10.1063/1.1475333
(11) Borges does Santos, R. M.; Muralha, V. S. F.; Correia, C. F.; Simões, J. A. M. J. Am. Chem. Soc. 2001, 123, 12670.doi: 10.1021/ja010703w
(12) Laarhoven, L. J. J.; Mulder, P.; Wayner, D. D. M. Acc. Chem.Res. 1999, 32, 342. doi: 10.1021/ar9703443
(13) Hansch, C.; Leo, A. Exploring QSAR: Fundamentals andApplications in Chemistry and Biology, American ChemicalSociety, Washington DC, 1995. doi: 10.1021/jm950902o
(14) Bao, L.; Sun, Z. R. FEBS Lett. 2002, 521, 109. doi: 10.1016/S0014-5793(02)02835-1
(15) Belousov, A. I.; Verzakov, S. A.; Von Frese, J. Chemom. Intell.Lab. Syst. 2002, 64, 15. doi: 10.1016/S0169-7439(02)00046-1
(16) Cai, Y. D.; Liu, X. J.; Xu, X. B.; Chou, K. C. Comput. Chem.2002, 26, 293. doi: 10.1016/S0097-8485(01)00113-9
(17) Morris, C.W.; Autret, A.; Boddy, L. Ecol. Model. 2001, 146, 57.doi: 10.1016/S0304-3800(01)00296-4
(18) Song, M. H.; Breneman, C. M.; Bi, J. B.; Sukumar, N.; Bennett, K. P.; Cramer, S.; Tugcu, N. J. Chem. Inf. Comput. Sci. 2002, 42, 1347. doi: 10.1021/ci025580t
(19) Liu, H. X.; Zhang, R. S.; Luan, F.; Yao, X. J.; Liu, M. C.; Hu, Z.D.; Fan, B. T. J. Chem. Inf. Comput. Sci. 2003, 43, 900.doi: 10.1021/ci0256438
(20) Liu, H. X.; Zhang, R. S.; Yao, X. J.; Liu, M. C.; Hu, Z. D.; Fan, B. T. J. Chem. Inf. Comput. Sci. 2003, 43, 1288. doi: 10.1021/ci0340355
(21) Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W. E., Jr. Struct.Chem. 2013, 24, 1799. doi: 10.1007/s11224-013-0222-4
(22) Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W. E., Jr. Phys.Chem. Liq. 2013, 51, 182. doi: 10.1080/00319104.2012.708932
(23) Dashtbozorgi, Z.; Golmohammadi, H.; Acree, W. E., Jr.Thermochim. Acta 2012, 539, 7. doi: 10.1016/j.tca.2012.03.017
(24) Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W. E., Jr. Mol.Inf. 2012, 31, 867. doi: 10.1002/minf.201200091
(25) Dashtbozorgi, Z.; Golmohammadi, H.; Acree, W. E., Jr. Eur. J.Pharm. Sci. 2012, 47, 421. doi: 10.1016/j.ejps.2012.06.021
(26) Mintz, C.; Clark, M.; Burton, K.; Acree, W. E., Jr.; Abraham, M.H. QSAR Comb. Sci. 2007, 26, 881. doi: 10.1002/qsar.200630152
(27) Toubaei, A.; Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W.E., Jr. J. Mol. Liq. 2012, 175, 24. doi: 10.1016/j.molliq.2012.08.006
(28) Todeschini, R.; Consonni, V. Molecular Descriptors forChemoinformatics.Wiley VCH:Weinheim, 2009. doi: 10.1002/9783527628766.ch22
(29) Hyperchem, re. 4. for Windows, Autodesk, Sansalito, CA, 1995.
(30) Todeschini, R.; Consonni, V.; Pavan, M. Dragon Software, Milano, 2002.
(31) Mercader, A. G.; Duchowicz, P. R.; Fernández, F. M.; Castro, E.A. J. Chem. Inf. Model. 2011, 51, 1575. doi: 10.1021/ci200079b
(32) MATLAB 7.0, The Mathworks Inc., Natick, MA, USA, 2005, http://www.mathworks.com.
(33) Baghban, A.; Ahmadi, M. A.; Pouladi, B.; Amanna, B.J. Supercrit. Fluids 2015, 101, 184. doi: 10.1016/j.supflu.2015.03.004
(34) Vapnik, V. N.; Lerner, A. Autom. Remote Control 1963, 24, 774.
(35) Vapnik, V. N.; Chervonenkis, A. Y. Autom. Remote Control 1964, 25, 821.
(36) Rojas, C.; Duchowicz, P. R.; Tripaldi, P.; Pis Diez, R.Chemometr. Intell. Lab. Syst. 2015, 140, 126. doi: 10.1016/j.chemolab.2014.09.020
(37) Mercader, G.; Duchowicz, P. R.; Fernández, F. M.; Castro, E. A.Chemometr. Intell. Lab. Syst. 2008, 92, 138. doi: 10.1016/j.chemolab.2008.02.005
(38) Gramatica, P. QSAR Comb. Sci. 2007, 26, 694. doi: 10.1002/qsar.200610151
(39) Cao, D. S.; Liang, Y. Z.; Xu, Q. S.; Li, H. D.; Chen, X.J. Comput. Chem. 2010, 31, 592. doi: 10.1002/jcc.21351
(40) Yan, J.; Huang, J. H.; He, M.; Lu, H. B.; Yang, R.; Kong, B.; Xu, Q. S.; Liang, Y. Z. J. Sep. Sci. 2013, 36, 2464. doi: 10.1002/jssc.201300254
(41) Cao, D. S.; Liang, Y. Z.; Xu, Q. S.; Yun, Y. H.; Li, H. D.J. Comput. Aided Mol. Des. 2011, 25, 67. doi: 10.1007/s10822-010-9401-1
(42) Eriksson, L.; Jaworska, J.; Worth, A. P.; Cronin, M. T.; McDowell, R. M.; Gramatica, P. Health Perspect. 2003, 111, 1361. doi: 10.1289/ehp.5758
(43) Golbraikh, A.; Shen, M.; Xiao, Z.; Xiao, Y.; Lee, K. H.; Tropsha, A. J. Comput. Aided Mol. Des. 2003, 17, 241.doi: 10.1023/A:1025386326946
(44) Golbraikh, A.; Tropsha, A. J. Mol. Graph. Model. 2002, 20, 269.doi: 10.1016/S1093-3263(01)00123-1
(45) Agrawal, V. K.; Khadikar, P.V. Bioorg. Med. Chem. 2001, 911, 3035. doi: 10.1016/S0968-0896(01)00211-5
(46) Pourbasheer, E.; Riahi, S.; Ganjali, M. R.; Norouzi, P.J. Enzyme. Inhib. Med. Chem. 2010, 256, 844. doi: 10.3109/14756361003757893
(47) Antipin, I. S.; Arslanov, N. A.; Palyulin, V. A.; Konovalov, A. I.; Zefirov, N. S. Dokl. Akad. Nauk. SSSR 1991, 316, 925.
(48) Sarkar, R.; Roy, A. B.; Sarkar, P. K. Math. Biosci. 1978, 39, 299.doi: 10.1016/0025-5564(78)90060-3
(49) Geary, R.C. Incorp. Statist. 1954, 5, 15. doi: 10.2307/2986645
(50) Moreau, G.; Broto, P. Nouv. J. Chim. 1980, 4, 757.
(51) Todeschini, R.; Consonni, V. Handbook of MolecularDescriptors, In: Methods and Principles in MedicinalChemistry; Mannhold, R., Kubinyi, H., Timmerman, H. Eds.; Wiley-VCH:Weinheim, 2000. doi: 10.1002/9783527613106
(52) Ma, S.; Lv, M.; Deng, F.; Zhang, X.; Zhai, H.; Lv, W. J. Hazard.Mater. 2015, 283, 591. doi: 10.1016/j.jhazmat.2014.10.011

[1] GHARA Manas, CHATTARAJ Pratim K. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. 物理化学学报, 2018, 34(2): 201-207.
[2] GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach[J]. 物理化学学报, 2017, 33(6): 1160-1170.
[3] MOHAMED IMRAN P. K., SUBRAMANI K.. L-鸟氨酸及其取代衍生物的结构和性质分析[J]. 物理化学学报, 2009, 25(11): 2357-2365.