Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 984-992    DOI: 10.3866/PKU.WHXB201702084
论文     
氧化铁负载铂纳米簇催化卤代硝基苯本体氢化性质研究
连超1,2,张垲2,王远2,*()
1 北京交通大学理学院化学系,北京100044
2 北京大学化学与分子工程学院,分子动态与稳态结构国家重点实验室,北京分子科学国家实验室,北京100871
Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene
Chao LIAN1,2,Kai ZHANG2,Yuan WANG2,*()
1 Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, P. R. China
2 Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
 全文: PDF(969 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

复相金属催化剂中的载体效应研究具有重要意义。我们以结构不同的氧化铁载体吸附“非保护型”Pt金属纳米簇制备了具有相同Pt纳米簇的Pt/Fe3O4、Pt/γ-Fe2O3和Pt/α-Fe2O3催化剂,考察了其在无溶剂条件下(本体条件)催化邻氯硝基苯(o-CNB)选择性氢化反应的性能,发现三种铂/氧化铁催化剂的催化选择性远高于商购铂/碳催化剂,Pt/γ-Fe2O3和Pt/α-Fe2O3的催化选择性明显高于Pt/Fe3O4,而Pt/Fe3O4的催化活性较Pt/α-Fe2O3高50%。铂/氧化铁对不同卤代硝基苯的本体选择性氢化反应表现出优良的催化性能,相应卤代苯胺产物的选择性均可达到99%以上。考察了温度、氢气压力对Pt/Fe3O4催化o-CNB本体氢化性能的影响。本工作为理解氧化铁负载金属纳米簇催化剂的特殊催化性质,进而发展高效金属纳米簇基催化体系提供了新的基础。

关键词: 金属纳米簇氧化铁卤代硝基苯卤代苯胺选择性氢化    
Abstract:

It is of significance to investigate the support effect in heterogeneous metal catalysts. Pt/Fe3O4, Pt/ γ-Fe2O3, and Pt/α-Fe2O3 nanocomposites with the same Pt nanoclusters were prepared by adsorbing Pt colloidal particles stabilized with simple ions and solvent molecules on different iron oxide supports. The catalytic performances over the as-prepared catalysts for the selective hydrogenation of o-chloronitrobenzene (o-CNB) in the absence of solvent were evaluated. It was found that the catalytic activity and selectivity over the prepared iron oxide-supported Pt nanocluster catalysts were higher than those of a commercial Pt/C catalyst. The selectivity towards o-chloroaniline over Pt/γ-Fe2O3 or Pt/α-Fe2O3 was higher than that over Pt/Fe3O4, while the catalytic activity over Pt/Fe3O4 was 50% higher than that over Pt/α-Fe2O3. The Pt/iron oxide catalysts also exhibited excellent catalytic properties for the solvent-free selective hydrogenation of other tested halonitrobenzenes, with the selectivity to corresponding haloanilines being > 99%. In addition, the influences of temperature and hydrogen pressure on the solvent-free selective hydrogenation of o-CNB over Pt/Fe3O4 were studied. This work is helpful in understanding the superior properties of iron oxide-supported metal nanocluster catalysts and provides a foundation for further developing highly efficient catalytic systems based on metal nanoclusters.

Key words: Platinum    Metal nanocluster    Iron oxide    Halonitrobenzene    Haloaniline    Selective hydrogenation
收稿日期: 2016-11-28 出版日期: 2017-02-08
中图分类号:  O643  
基金资助: 国家自然科学基金(21573010);科技部国家重点研发计划项目(2016YFE0118700);北京交通大学人才基金(2015RC070)
通讯作者: 王远     E-mail: wangy@pku.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
连超
张垲
王远

引用本文:

连超,张垲,王远. 氧化铁负载铂纳米簇催化卤代硝基苯本体氢化性质研究[J]. 物理化学学报, 2017, 33(5): 984-992.

Chao LIAN,Kai ZHANG,Yuan WANG. Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene. Acta Physico-Chimica Sinca, 2017, 33(5): 984-992.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201702084        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I5/984

图1  Pt/Fe3O4 (a)、Pt/γ-Fe2O3 (b)和Pt/α-Fe2O3 (c)催化剂的XRD谱图
图2  催化剂的TEM照片(a-c)及相应的Pt纳米簇粒子粒径分布(d-f)
图示意图1  卤代硝基苯本体氢化反应路径
CatalystReaction time/minReaction ratebConversionc/%dSelectivity/%d
o-CANANothers
Pt/Fe3O41121.510099.40.5trace
Pt/γ-Fe2O31371.210099.80.2trace
Pt/α-Fe2O31691.010099.70.2trace
Pt/C (Acros)e3350.510085.14.310.6f
表1  几种氧化铁负载铂催化剂对o-CNB本体氢化反应的催化性能a
PVP-PtPt/Fe3O4Pt/α-Fe2O3Pt/γ-Fe2O3
Binding energy/eV70.871.371.171.1
表2  铂/氧化铁催化剂中Pt 4f7/2电子结合能
Temperature/℃ Pressure/MPa Reaction time/min Reaction rateb Conversionc/% Selectivity/%
o-CANANothersd
502.01121.510099.40.5trace
702.01001.710099.20.8trace
902.0672.510099.01.0trace
1102.0523.210098.91.1trace
501.02920.610099.60.4trace
503.0991.710099.40.6trace
504.0702.410098.80.50.7
505.0453.710095.30.44.3
表3  温度和氢气压力对Pt/Fe3O4催化o-CNB氢化反应的影响a
SubstrateTemperature/℃Reaction time/minConversionb/%Yieldc/%
608010099.5
1004510099
906110099.2
608510099.1
表4  Pt/Fe3O4对不同卤代硝基氢化反应催化性能a
1 Xiao C. ; Wang X. D. ; Lian C. ; Liu H. Q. ; Liang M. H. ; Wang Y. Curr. Org. Chem. 2012, 16, 280.
doi: 10.2174/138527212798993077
2 Zuo B. J. ; Wang Y. ; Wang Q. L. ; Zhang J. L. ; Wu N. Z. ; Peng L. D. ; Gui L. L. ; Wang X. D. ; Wang R. M. ; Yu D. P. J.Catal. 2004, 222, 493.
doi: 10.1016/j.jcat.2003.12.007
3 Zhang J. L. ; Wang Y. ; Ji H. ; Wei Y. G. ; Wu N. Z. ; Zuo B. J. ; Wang Q. L. J. Catal. 2005, 229, 114.
doi: 10.1016/j.jcat.2004.09.029
4 Chen Y. Y. ; Wang C. ; Liu H. Y. ; Qiu J. S. ; Bao X. H. Chem.Commun. 2005, 5298.
doi: 10.1039/b509595f
5 Chen Y. Y. ; Qiu J. S. ; Wang X. K. ; Xiu J. H. J. Catal. 2006, 242, 227.
doi: 10.1016/j.jcat.2006.05.028
6 Pietrowski M. ; Zieliński M. ; Wojciechowska M. Catal. Lett. 2009, 128, 31.
doi: 10.1007/s10562-008-9702-3
7 Fan G. Y. ; Zhang L. ; Fu H. Y. ; Yuan M. L. ; Li R. X. ; Chen H. ; Li X. J. Catal. Commun. 2010, 11, 451.
doi: 10.1016/j.catcom.2009.11.021
8 Liu M. H. ; Zhang J. ; Liu J. Q. ; Yu W. W. J. Catal. 2011, 278, 1.
doi: 10.1016/j.jcat.2010.11.009
9 Xu X. S. ; Chen A. A. ; Zhou L. ; Li X. Q. ; Gu H. Z. ; Yan X. H. Chin. J. Catal. 2013, 34, 391.
doi: 10.3724/SP.J.1088.2013.20959
10 Dutta D. ; Dutta D. K. Appl. Catal. A 2014, 487, 158.
doi: 10.1016/j.apcata.2014.09.004
11 Fu T. ; Hu P. ; Wang T. ; Dong Z. ; Xue N. H. ; Peng L. M. ; Guo X. F. ; Ding W. P. Chin. J. Catal. 2015, 36, 2030.
doi: 10.1016/S1872-2067(15)60904-4
12 Iihama S. ; Furukawa S. ; Komatsu T. ACS Catal 2016, 6, 742.
doi: 10.1021/acscatal.5b02464
13 Liang M. H. ; Wang X. D. ; Liu H. Q. ; Liu H. C. ; Wang Y. J.Catal. 2008, 255, 335.
doi: 10.1016/j.jcat.2008.02.025
14 Xiao C. ; Liang M. H. ; Gao A. ; Xie J. L. ; Wang Y. ; Liu H. C. J. Nanopart. Res. 2013, 15, 1822.
doi: 10.1007/s11051-013-1822-z
15 Cárdenas-Lizana F. ; Gómez-Quero S. ; Keane M. A. Appl.Catal. A 2008, 334, 199.
doi: 10.1016/j.apcata.2007.10.007
16 Cárdenas-Lizana F. ; Gómez-Quero S. ; Hugon A. ; Delannoy L. ; Louis C. ; Keane M. A. J. Catal. 2009, 262, 235.
doi: 10.1016/j.jcat.2008.12.019
17 Cárdenas-Lizana F. ; Pedro Z. M. ; Gómez-Quero S. ; Keane M. A. J. Mol. Catal. A 2010, 326, 48.
doi: 10.1016/j.molcata.2010.04.006
18 Xu D. Q. ; Hu Z. Y. ; Li W.W. ; Luo S. P. ; Xu Z. Y. J. Mol.Catal. A 2005, 235, 137.
doi: 10.1016/j.molcata.2005.04.004
19 Xiao C. X. ; Wang H. Z. ; Mu X. D. ; Kou Y. J. Catal. 2007, 250, 25.
doi: 10.1016/j.jcat.2007.05.009
20 Ichikawa S. ; Tada M. ; Iwasawa Y. ; Ikariya T. Chem.Commun. 2005, 924.
doi: 10.1039/b414423f
21 Xi C. Y. ; Cheng H. Y. ; Hao J. M. ; Cai S. X. ; Zhao F. Y. J.Mol. Catal. A 2008, 282, 80.
doi: 10.1016/j.molcata.2007.11.027
22 Meng X. C. ; Cheng H. Y. ; Fujita S. ; Hao Y. F. ; Shang Y. J. ; Yu Y. C. ; Cai S. X. ; Zhao F. Y. ; Arai M. J. Catal. 2010, 269, 131.
doi: 10.1016/j.jcat.2009.10.024
23 Lian C. ; Liu H. Q. ; Xiao C. ; Ya ng ; W . ; Zhang K. ; Liu Y. ; Wang Y. Chem. Commun. 2012, 48, 3124.
doi: 10.1039/c2cc16620h
24 Sun Z. Y. ; Zhang H. Y. ; An G. M. ; Yang G. Y. ; Liu Z. M. J.Mater. Chem. 2010, 20, 1947.
doi: 10.1039/b921510g
25 Wang Y. N. ; Yang Y. X. ; Li Y.W. ; Lai J. H. ; Sun K. P. Catal.Commun. 2012, 19, 110.
doi: 10.1016/j.catcom.2011.12.014
26 Liu M. H. ; Mo X. X. ; Liu Y. Y. ; Xiao H. L. ; Zhang Y. ; Jing J. Y. ; Colvin V. L. ; Yu W. W. Appl. Catal. A 2012, 439-440, 192.
doi: 10.1016/j.apcata.2012.07.006
27 Zhan Q. F. ; Ma L. ; Lu C. S. ; Xu X. L. ; Lyu J. H. ; Li X. N. React. Kinet. Mech. Cat. 2015, 114, 629.
doi: 10.1007/s11144-014-0826-8
28 Wang Y. N. ; Yang Y. X. ; Li Y.W. ; Lai J. H. ; Sun K. P. ActaPhys.-Chim. Sin. 2013, 29, 2239.
doi: 10.3866/PKU.WHXB201308151
王亚南; 杨玉霞; 李永文; 赖俊华; 孙鲲鹏. 物理化学学报, 2013, 29, 2239.
doi: 10.3866/PKU.WHXB201308151
29 Wang Y. ; Ren J.W. ; Deng K. ; Gui L. L. ; Tang Y. Q. Chem.Mater. 2000, 12, 1622.
doi: 10.1021/cm0000853
30 Li W. Z. ; Liang C. H. ; Zhou W. J. ; Qiu J. S. ; Zhou Z. H. ; Sun G. Q. ; Xin Q. J. Phys. Chem. B 2003, 107, 6292.
doi: 10.1021/jp022505c
31 Mu Y. Y. ; Liang H. P. ; Hu J. S. ; Jiang L. ; Wan L. J. J. Phys.Chem. B 2005, 109, 22212.
doi: 10.1021/jp0555448
32 Garsany Y. ; Epshteyn A. ; Purdy A. P. ; More K. L. ; Swider-Lyons K. E. J. Phys. Chem. Lett. 2010, 1, 1977.
doi: 10.1021/jz100681g
33 Sonstrom P. ; Arndt D. ; Wang X. D. ; Zielasek V. ; Baumer M. Angew. Chem. Int. Edit. 2011, 50, 3888.
doi: 10.1002/anie.201004573
34 Qi J. ; Jiang L. H. ; Jing M. Y. ; Tang Q.W. ; Sun G. Q. Int. J.Hydrog. Energy 2011, 36, 10490.
doi: 10.1016/j.ijhydene.2011.06.022
35 Zheng N. ; Zhu C. M. ; Sun B. ; Shi Z. J. ; Liu Y. ; Wang Y. Acta Phys.-Chim. Sin. 2012, 28, 2263.
doi: 10.3866/PKU.WHXB201208171
郑宁; 朱春梅; 孙斌; 施祖进; 刘岩; 王远. 物理化学学报, 2012, 28, 2263.
doi: 10.3866/PKU.WHXB201208171
36 Zhang L.W. ; Zheng N. ; Gao A. ; Zhu C. M. ; Wang Z. Y. ; Wang Y. ; Shi Z. J. ; Liu Y. J. Power Sources 2012, 220, 449.
doi: 10.1016/j.jpowsour.2012.08.009
37 Pushkarev V. V. ; An K. J. ; Alayoglu S. ; Beaumont S. K. ; Somorjai G. A. J. Catal. 2012, 292, 64.
doi: 10.1016/j.jcat.2012.04.022
38 Wang P. ; Zhao J. ; Li X. B. ; Yang Y. ; Yang Q. H. ; Li C. Chem. Commun. 2013, 49, 3330.
doi: 10.1039/c3cc39275a
39 Zhu C. M. ; Gao A. ; Wang Y. ; Liu Y. Chem. Commun. 2014, 50, 13889.
doi: 10.1039/c4cc02391a
40 Li F. J. ; Tang D. M. ; Jian Z. L. ; Liu D. Q. ; Golberg D. ; Yamada A. ; Zhou H. Adv. Mater. 2014, 26, 4659.
doi: 10.1002/adma.201400162
41 Chen C. Y. ; Chen F. ; Zhang L. ; Pan S. X. ; Bian C. Q. ; Zheng X. M. ; Meng X. J. ; Xiao F. S. Chem. Commun. 2015, 51, 5936.
doi: 10.1039/c4cc09383f
42 Schrader I. ; Warneke J. ; Backenkohler J. ; Ku nz ; S . J. Am.Chem. Soc. 2015, 137, 905.
doi: 10.1021/ja511349p
43 Speder J. ; Zana A. ; Arenz M. Catal. Today 2016, 262, 82.
doi: 10.1016/j.cattod.2015.09.021
44 Liu H. Q. ; Liang M. H. ; Xiao C. ; Zheng N. ; Feng X. H. ; Liu Y. ; Xie J. L. ; Wang Y. J. Mol. Catal. A 2009, 308, 79.
doi: 10.1016/j.molcata.2009.03.033
45 Kratky V. ; Kralik M. ; Mecarova M. ; Stolcova M. ; Zalibera L. ; Hronec M. Appl. Catal. A 2002, 235, 225.
doi: 10.1016/S0926-860X(02)00274-0
46 Becker K. D. ; VonWurmb V. ; Litterst F. J. J. Phys. Chem.Solids 1993, 54, 923.
doi: 10.1016/0022-3697(93)90220-L
47 Szotek Z. ; Temmerman W. M. ; Svane A. ; Petit L. ; Stocks G.M. ; Winter H. Phys. Rev. B 2003, 68, 54415.
doi: 10.1103/PhysRevB.68.054415
48 Xiong S. ; Xu J. ; Chen D. ; Wang R. M. ; Hu X. L. ; Shen G.Z. ; Wang Z. L. CrystEngComm 2011, 13, 7114.
doi: 10.1039/c1ce05569k
49 Fu X. Y. ; Wang Y. ; Wu N. Z. ; Gui L. L. ; Tang Y. Q. J.Colloid Interface Sci. 2011, 243, 326.
doi: 10.1006/jcis.2001.7861
[1] 骆明川,孙英俊,秦英楠,杨勇,吴冬,郭少军. 维度调控策略提升铂基纳米晶氧还原催化研究进展[J]. 物理化学学报, 2018, 34(4): 361-376.
[2] 于景华,李文文,朱红. 管径对碳纳米管负载铂催化剂氧还原的影响[J]. 物理化学学报, 2017, 33(9): 1838-1845.
[3] 尹璐,梁程,陈可先,赵琛烜,姚加,李浩然. 含TEMPO配合物的合成、表征、谱学性质及光猝灭机理[J]. 物理化学学报, 2017, 33(7): 1390-1398.
[4] 翟萧,丁轶. 纳米多孔金属电催化剂在氧还原反应中的应用[J]. 物理化学学报, 2017, 33(7): 1366-1378.
[5] 黄明辉, 金碧瑶, 赵莲花, 孙世刚. PtNiSnO2/C的制备、表征及其电催化氧化乙醇活性[J]. 物理化学学报, 2017, 33(3): 563-572.
[6] 常乔婉, 肖菲, 徐源, 邵敏华. 核-壳结构氧还原反应电催化剂[J]. 物理化学学报, 2017, 33(1): 9-17.
[7] 卢善富, 彭思侃, 相艳. 双极界面聚合物膜燃料电池研究进展[J]. 物理化学学报, 2016, 32(8): 1859-1865.
[8] 左会文, 陆春海, 任玉荣, 李奕, 章永凡, 陈文凯. 单层石墨相氮化碳负载Pt4团簇吸附O2的第一性理论研究[J]. 物理化学学报, 2016, 32(5): 1183-1190.
[9] 李舒爽, 陶磊, 张奇, 刘永梅, 曹勇. 纳米金催化的绿色合成与清洁反应研究新进展[J]. 物理化学学报, 2016, 32(1): 61-74.
[10] 张杰, 窦美玲, 王峰, 刘景军, 李志林, 吉静, 宋夜. PDDA修饰的碳纳米管载铂电催化剂的合成及其在碱性条件下的氧气还原反应催化性能[J]. 物理化学学报, 2015, 31(9): 1727-1732.
[11] 潘剑明, 杨威, 孙海标, 郑翔, 李国华. 碳化钨与蒙脱石纳米复合材料的制备与电催化活性[J]. 物理化学学报, 2015, 31(5): 998-1006.
[12] 欧植泽, 句宝龙, 高云燕, 王子超, 黄干, 钱一梦. 炔基配体对2,6-双(N-乙基苯并咪唑)吡啶炔基铂(Ⅱ)配合物与G-四链体作用及抗癌活性的影响[J]. 物理化学学报, 2015, 31(12): 2386-2394.
[13] 侯宏英. 碱性固体燃料电池碱性聚合物电解质膜的最新研究进展[J]. 物理化学学报, 2014, 30(8): 1393-1407.
[14] 王丽, 马俊红. 氮掺杂还原氧化石墨烯负载铂催化剂的制备及甲醇电氧化性能[J]. 物理化学学报, 2014, 30(7): 1267-1273.
[15] 敖平, 许响生, 徐潇潇, 李加衡, 严新焕. 组合型Pt/TiO2催化剂用于低温催化甲苯完全氧化[J]. 物理化学学报, 2014, 30(5): 950-956.