Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 941-948    DOI: 10.3866/PKU.WHXB201702085
论文     
Ag3XO4(X = P,As,V)电子结构及光催化性质的第一性原理计算
李蛟1,2,*(),陈忠2
1 山东理工大学材料科学与工程学院,山东淄博255049
2 南洋理工大学材料科学与工程学院,新加坡639798
First-Principles Study on the Electronic and Photocatalytic Properties of Ag3XO4 (X = P, As, V)
Jiao LI1,2,*(),Zhong CHEN2
1 School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong Province, P. R. China
2 School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
 全文: PDF(1375 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

基于密度泛函理论的第一性原理对Ag3XO4(X = P,As,V)电子结构及光催化性质进行了对比研究。与Ag3PO4相比,Ag3VO4较好的光催化稳定性主要源于其结构中Ag―O间较强的作用力增加了对Ag+的控制,而Ag3VO4弱的光催化活性与其导带底中存在d轨道成份以及较低的价带边势(2.335 V,vs NHE)有关;对Ag3AsO4而言,其优于Ag3PO4光催化活性的原因基于三个方面:(1)由高分散Ag s-Ag s杂化轨道构成的导带底能带;(2)窄的带隙(1.91 eV);(3)宽的可见光响应范围以及高的光吸收系数。此外,Ag3XO4(X = P,As,V)均为间接带隙半导体光催化材料,其中,Ag3VO4有用于分解水制氢研究的可能;上述计算结果与实验结果吻合。

关键词: 第一性原理Ag3XO4(X = P,As,V)能带结构态密度光催化    
Abstract:

In this study, the electronic structures and photocatalytic properties of Ag3XO4 (X = P, As, V) were investigated using the first principles based on the density functional theory. In comparison to Ag3PO4, Ag3VO4 shows better photocatalytic stability, mainly due to the enhanced Ag―O bonds and improved Ag ion stability, but poorer photocatalytic activity in the visible light region mainly due to the presence of d orbital character at the conduction band minimum (CBM) and lower valence band maximum (VBM) potentials (2.335 V, vs NHE). Ag3AsO4 shows photocatalytic activity superior to Ag3PO4, which may be attributed to the following reasons: (1) the highly dispersive band structure of the CBM resulting fromAg s-Ag s hybridization, (2) a smaller band gap of 1.91 eV, (3) the broader absorption range and higher absorption capacity of visible light. Moreover, our theoretical results demonstrate that though Ag3XO4 (X = P, As, V) species act as indirect band gap photocatalytic semiconductors, only Ag3VO4 is a potential candidate for the photocatalytic hydrogen generation from water. The calculated results mentioned above are in good agreement with experimental results.

Key words: First principles calculations    Ag3XO4 (X = P, As, V)    Band structure    Density of states    Photocatalytic property
收稿日期: 2016-12-05 出版日期: 2017-02-08
中图分类号:  O641  
基金资助: 山东省高等学校科技发展计划(J15LA08)
通讯作者: 李蛟     E-mail: haiyan9943@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李蛟
陈忠

引用本文:

李蛟,陈忠. Ag3XO4(X = P,As,V)电子结构及光催化性质的第一性原理计算[J]. 物理化学学报, 2017, 33(5): 941-948.

Jiao LI,Zhong CHEN. First-Principles Study on the Electronic and Photocatalytic Properties of Ag3XO4 (X = P, As, V). Acta Physico-Chimica Sinca, 2017, 33(5): 941-948.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201702085        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I5/941

图1  (a) Ag3XO4 (X = P, As)与(b) Ag3VO4的晶胞结构
Ag3XO4 X = P X = As X = V
a = b = c/nm α = β = γ/(°) a = b = c/nm α = β = γ/(°) a = b/nm c/nm α = β = γ/(°)
Exp.17-190.6004900.612900.49970.969190
this work0.6076900.6209900.50040.970790
deviation/%1.21/ 1.45/ 0.140.17/
表1  各模型晶格参数的优化结果
Ag3XO4 Bond population Bond length/nm
X = P 0.62 (O―P) 0.13 (O―Ag) 0.1546 (O―P) 0.2407 (O―Ag)
X = As 0.56 (O―As) 0.16 (O―Ag) 0.1714 (O―As) 0.2392 (O―Ag)
X = V 0.67 (O―V) 0.12 (O―Ag1) 0.11 (O―Ag2) 0.1743 (O―V) 0.2297 (O―Ag1) 0.2337 (O―Ag2)
表2  Ag3XO4 (X = P, As, V)的键布居和键长
图2  Ag3PO4的能带结构(a)以及费米能级附近能带结构(b)
图3  Ag3AsO4的能带结构(a)以及费米能级附近能带结构(b)
图4  Ag3VO4的能带结构(a)以及费米能级附近能带结构(b)
图5  (a) Ag3PO4, (b) Ag3AsO4与(c) Ag3VO4总态密度以及各原子亚层轨道态密度图
图6  Ag3XO4 (X = P, As, V)的吸收系数
图7  Ag3XO4 (X = P, As, V)的吸收系数
1 Yi Z. G. ; Ye J. H. ; Kikugawa N. ; Kako T. ; Ouyang S. X. ; Stuart-William H. ; Yang H. ; Cao J. Y. ; Luo W. J. ; Li Z. S. ; Liu Y. ; Ray L. Nat. Mater 2011, 9 (42), 559.
doi: 10.1038/NMAT2780
2 Ma X. G. ; Lu B. ; Li D. ; Shi R. ; Pan C. S. ; Zhu Y. F. J. Phys. Chem. C 2011, 115 (11), 4680.
doi: 10.1021/jp111167u
3 Umezawa N. ; Ouyang S. ; Ye J. H. Phys. Rev. B. 2011, 83 (3), 287.
doi: 10.1103/PhysRevB.83.035202
4 Ma Z. J. ; Yi Z. G. ; Sun J. ; Wu K. C. J. Phys. Chem. C. 2012, 116 (47), 25074.
doi: 10.1021/jp3093447
5 Tang J. T. ; Liu Y. G. ; Li H. Z. ; Tan Z. ; Li D. T. Chem. Commun 2013, 49 (48), 5498.
doi: 10.1039/c3cc41090k
6 Zhang L. ; He Y. M. ; Ye P. ; Qin W. H. ; Wu Y. ; Wu T. H. Mater. Sci. Eng. B 2013, 178 (1), 45.
doi: 10.1016/j.mseb.2012.10.011
7 Tao X. C. ; Hong Q. ; Xu T. Z. ; Liao F. J. Mater. Sci.-Mater. Electron 2014, 25 (8), 3480.
doi: 10.1007/s10854-014-2042-8
8 Wangkawong K. ; Phanichphant S. ; Tantraviwat D. ; Inceesungvorn B. J. Colloid Interface Sci 2015, 454 (2044), 210.
doi: 10.1016/j.jcis.2015.05.025
9 Savio J. A. M. ; Stephen A. S. ; David J. M. ; Zheng X. G. ; Tang J. W. Energ. Environ. Sci 2015, 8 (3), 731.
doi: 10.1039/C4EE03271C
10 Yu X. L. ; Du R. F. ; Li B. Y. ; Zhang Y. H. ; Liu H. J. ; Qu J. H. ; An X. Q. Appl. Catal. B-Environ 2016, 182, 504.
doi: 10.1016/j.apcatb.2015.09.003
11 Andrae H. ; Blachnik R. J. Therm. Anal 1989, 35 (2), 595.
doi: 10.1007/BF01904461
12 Ma H. W. ; Guo G. C. ; Chen W. T. ; Deng L. ; Zhou G. W. ; Dong Z. C. ; Huang J. S. Chin. J. Struct. Chem 2003, 22 (2), 161.
doi: 10.14102/j.cnki.0254-5861.2003.02.008
13 Reunchan P. ; Boonchun A. ; Umezawa N. Phys. Chem. Chem. Phys 2016, 18 (13), 23407.
doi: 10.1039/c6cp03633c
14 Trimarchi G. ; Peng H. ; Im J. ; Freeman A. J. ; Cloet V. ; Raw A. ; Poeppelmeier K. R. ; Biswas K. ; Lany S. ; Zunger A. Phys. Rev. B 2011, 84 (16), 3990.
doi: 10.1103/PhysRevB.84.165116
15 Wu, X. Synthesis of Ag3VO4 and Its Visible-Light Photocatalytic Performance. M. S. Dissertation, Xiangtan University, Xiangtan, 2012.
吴尧. Ag3VO4的制备及可见光光催化性能研究[D].湘潭:湘潭大学, 2012.
16 Wang S. M. ; Guan Y. ; Wang L. P. ; Zhao W. ; Yang S. G. ; He H. ; Sun C. J. Comput. Theor. Nanos 2015, 12 (12), 5016.
doi: 10.1166/jctn.2015.4087
17 Ng H. N. ; Calvo C. ; Faggiani R. Acta Crystallogr. Sect. B 1978, 34 (33), 898.
doi: 10.1107/S0567740878014570
18 Helmholtz L. ; Levine R. J. Am. Chem. Soc 1942, 64 (2), 354.
doi: 10.1021/ja01254a036
19 Dinnebier R. E. ; Kowalevsky A. ; Reichertt H. ; Jansen M. New Cryst. St 2007, 222 (8), 420.
doi: 10.1524/zkri.2007.222.8.420
20 Qu L. F. ; Hou Q. Y. ; Zhao C. W. Acta Phys. Sin 2016, 65 (3), 037103.
doi: 10.7498/aps.65.037103
曲灵丰; 侯清玉; 赵春旺. 物理学报, 2016, 65 (3), 037103.
doi: 10.7498/aps.65.037103
21 Mayer I. ; R?ther G. ; Suhai S. Chem. Phys. Lett. 1998, 293 (1-2), 81.
doi: 10.1016/S0009-2614(98)00774-X
22 Yang Z. M. ; Huang G. F. ; Huang W. Q. ; Wei J. M. ; Yan X. G. ; Liu Y. Y. ; Jiao C. ; Wan Z. ; Pan A. L. J. Mater. Chem. A 2014, 2 (6), 1750.
doi: 10.1039/c3ta14286h
23 Cai W. W. ; Li J. ; Zhang H. Mater. Sci. Technol 2016, 24 (5), 47.
doi: 10.11951/j.issn.1005-0299
蔡维维; 李蛟; 张华. 材料科学与工艺, 2016, 24 (5), 47.
doi: 10.11951/j.issn.1005-0299
24 Wu R. X. ; Liu D. J. ; Yu Y. ; Yang T. Acta Phys. Sin 2016, 65 (2), 027101.
doi: 10.7498/aps.65.027101
吴若熙; 刘代俊; 于洋; 杨涛. 物理学报, 2016, 65 (2), 027101.
doi: 10.7498/aps.65.027101
25 Huang D. ; Ju Z. P. ; Li C. S. ; Yao C. M. ; Guo J. Acta Phys. Sin 2014, 63 (24), 247101.
doi: 10.7498/aps.63.247101
黄丹; 鞠志萍; 李长生; 姚春梅; 郭进. 物理学报, 2014, 63 (24), 247101.
doi: 10.7498/aps.63.247101
26 Zhang J. F. ; Zhou P. ; Liu J. J. ; Yu J. G. Phys. Chem. Chem. Phys 2014, 16 (38), 20382.
doi: 10.1039/c4cp02201g
27 Zhang J. F. ; Yu W. L. ; Liu J. J. ; Liu B. S. Appl. Surf. Sci. 2015, 358 (6), 457.
doi: 10.1016/j.apsusc.2015.08.084
28 Guo Z. L. ; Sa B. S. ; Pathak B. ; Zhou J. ; Ahuja R. ; Sun Z. M. Int. J. Hydrog. Energy. 2014, 39 (5), 2042.
doi: 10.1016/j.ijhydene.2013.11.055
29 Yuan J. H. ; Gao B. ; Wang W. ; Wang J. F. Acta Phys.-Chim. Sin. 2015, 31 (7), 1302.
doi: 10.3866/PKU.WHXB201505081
袁俊辉; 高博; 汪文; 王嘉赋. 物理化学学报, 2015, 31 (7), 1302.
doi: 10.3866/PKU.WHXB201505081
30 Huang C. M. ; Kong W. C. ; Guan T. P. ; Wen S. C. ; Yang T. C. Chem. Eng. Sci. 2010, 65 (1), 148.
doi: 10.1016/j.ces.2009.03.022
31 Hu X. ; Hu C. ; Qu J. Mater. Res. Bull. 2008, 43 (11), 2986.
doi: 10.1016/j.materresbull.2007.11.022
32 Zhao B. Q. ; Zhang Y. ; Qiu X. Y. ; Wang X. W. Acta Phys. Sin. 2016, 65 (1), 014212.
doi: 10.7498/aps.65.014212
赵佰强; 张耘; 邱晓燕; 王学维. 物理学报, 2016, 65 (1), 014212.
doi: 10.7498/aps.65.014212
33 Tong H. ; Ouyang S. X. ; Bi Y. P. ; Umezawa N. ; Oshikiri M. ; Ye J. H. Adv. Mater. 2012, 24 (2), 229.
doi: 10.1002/adma.201102752
34 Nethercot A. H. , Jr. Phys. Rev. Lett. 1974, 33 (18), 1088.
doi: 10.1103/PhysRevLett.33.1088
35 Feng C. K. ; Teng F. ; Liu Z. L. ; Chang C. ; Zhao Y. X. ; Wang S. R. ; Chen M. D. ; Yao W. Q. ; Zhu Y. F. J. Mol. Catal. AChem. 2015, 401, 35.
doi: 10.1016/j.molcata.2015.02.022
36 Segall M. D. ; Lindan P. J. D. ; Probert M. J. ; Pickard C. J. ; Hasnip P. J. ; Clark S. J. ; Payne M. C. J. Phys. Condens. Matter. 2002, 14 (11), 2717.
doi: 10.1088/0953-8984/14/11/301
37 Su Y. C. ; Xiao L. H. ; Fu Y. C. ; Zhang P. F. ; Peng P. Sci. Sin. Phys. Mech. Astron 2011, 41 (1), 58.
doi: 10.1360/132010-184
苏玉长; 肖立华; 伏云昌; 张鹏飞; 彭平. 中国科学:物理学力学天文学, 2011, 41 (1), 58.
doi: 10.1360/132010-184
[1] 杜新华,李阳,殷辉,向全军. Au/TiO2/MoS2等离子体复合光催化剂的制备及其增强光催化产氢活性[J]. 物理化学学报, 2018, 34(4): 414-423.
[2] 方磊,孙铭骏,曹昕睿,曹泽星. 类单晶硅结构Si(C≡C-C6H4-C≡C)4新材料的力学与光学性质:第一性原理研究[J]. 物理化学学报, 2018, 34(3): 296-302.
[3] 周亮,张雪华,林琳,李盼,邵坤娟,李春忠,贺涛. 无模板法水热合成CoTe及其可见光光催化还原CO2性能[J]. 物理化学学报, 2017, 33(9): 1884-1890.
[4] 宋春冬,张静,高莹,卢圆圆,王芳芳. 基于单质法合成直接Z型CuS-WO3及光催化性能[J]. 物理化学学报, 2017, 33(9): 1891-1897.
[5] 程若霖,金锡雄,樊向前,王敏,田建建,张玲霞,施剑林. 氮掺杂还原氧化石墨烯与吡啶共聚g-C3N4复合光催化剂及其增强的产氢活性[J]. 物理化学学报, 2017, 33(7): 1436-1445.
[6] 张驰,吴志娇,刘建军,朴玲钰. MoS2/TiO2复合催化剂的制备及其在紫外光下的光催化制氢活性[J]. 物理化学学报, 2017, 33(7): 1492-1498.
[7] 阮毛毛, 宋乐新, 王青山, 夏娟, 杨尊, 滕越, 许哲远. 纳米片自组装的(BiO)2CO3单分散微米绒球的绿色可控合成及其光催化性能[J]. 物理化学学报, 2017, 33(5): 1033-1042.
[8] 胡海龙, 王晟, 侯美顺, 刘福生, 王田珍, 李天龙, 董乾乾, 张鑫. 水热法制备p-CoFe2O4/n-CdS及其光催化制氢性能[J]. 物理化学学报, 2017, 33(3): 590-601.
[9] 白金, 陈鑫, 奚兆毅, 王翔, 李强, 胡绍争. 溶剂热后处理对石墨相氮化碳光化学固氮产氨性能的影响[J]. 物理化学学报, 2017, 33(3): 611-619.
[10] 肖明, 黄在银, 汤焕丰, 陆桑婷, 刘超. Ag3PO4表面热力学性质及光催化原位过程热动力学的晶面效应[J]. 物理化学学报, 2017, 33(2): 399-406.
[11] 荆涛, 戴瑛. 固溶体光催化材料的研究进展[J]. 物理化学学报, 2017, 33(2): 295-304.
[12] 张云龙,章俞之,宋力昕,郭云峰,吴岭南,张涛. 砚状ZnO/石墨烯复合物的制备及其光催化性能[J]. 物理化学学报, 2017, 33(11): 2284-2292.
[13] 黄雅钰,方秋艳,周剑章,詹东平,时康,田中群. 光诱导约束刻蚀体系中的TiO2纳米管阵列光电极上Cu的沉积及抑制[J]. 物理化学学报, 2017, 33(10): 2042-2051.
[14] 张昊, 李新刚, 蔡金孟, 王亚婷, 武墨青, 丁彤, 孟明, 田野. 氢氟酸加入量对钛基半导体结构演变及光催化性能的影响[J]. 物理化学学报, 2017, 33(10): 2072-2081.
[15] 陈阳,杨晓燕,张鹏,刘道胜,桂建舟,彭海龙,刘丹. 贵金属负载的棒状ZnO复合光催化剂的制备及其提升的光催化性能[J]. 物理化学学报, 2017, 33(10): 2082-2091.