Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 960-967    DOI: 10.3866/PKU.WHXB201702086
论文     
手性布洛芬对映体的选择性光电化学氧化
代卫国1,何丹农1,2,*()
1 纳米技术及应用国家工程研究中心,上海200241
2 上海交通大学,材料科学与工程学院,上海200240
Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers
Wei-Guo DAI1,Dan-Nong HE1,2,*()
1 National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
2 School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
 全文: PDF(1984 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

将光电化学方法与原位分子印迹技术相结合,通过使用手性布洛芬的对映体S-布洛芬(S-ibuprofen)和R-布洛芬(R-ibuprofen)为模板分子,在原位生长的单晶二氧化钛(TiO2)纳米棒表面构筑S-ibuprofen和R-ibuprofen分子印迹位点,制备出能够对S-ibuprofen和R-ibuprofen选择性识别和催化氧化的印迹电极。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和拉曼光谱(Raman)对电极的形貌、结构和组成进行表征,通过电化学阻抗对电极表面的电子传递阻力进行研究,以制备得到的印迹电极为工作电极通过光电化学方法对其印迹位点的光电识别选择性和光电降解选择性进行测试。制备得到的TiO2为单晶纳米棒阵列,印迹位点成功构筑在TiO2纳米棒表面且具有很好的择形吸附能力。本工作首次实现了手性医药布洛芬对映体在人工光电催化剂表面的选择性识别和选择性氧化降解。

关键词: 布洛芬单晶二氧化钛光电化学识别择形吸附选择性氧化降解    
Abstract:

The photoelectrochemical method was combined with the in-situ molecular imprinting technique. Using the chiral ibuprofen enantiomers (S-ibuprofen and R-ibuprofen) as template molecules, S-ibuprofen and R-ibuprofen molecular imprinting sites were constructed on the surface of monocrystalline TiO2 nanorods. The imprinted electrodes were capable of selective recognition and catalytic oxidation of S-ibuprofen and Ribuprofen. The morphology, structure, and composition of the electrode were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The electron transfer resistance of the electrode surface was studied with electrochemical impedance spectroscopy. The photoelectrochemical recognition and degradation were measured photoelectrochemically using the prepared imprinted electrodes as the working electrode. The TiO2 prepared was a single crystal nanorod array. The imprinted sites were successfully constructed on the surface of TiO2 nanorods and had shape selective adsorption capacities. The selective recognition and selective oxidative degradation of chiral ibuprofen enantiomers on the surface of artificial photoelectrocatalysts were realized for the first time.

Key words: Ibuprofen    Monocrystalline TiO2    Photoelectrochemical recognition    Shape selective adsorption    Selective oxidative degradation
收稿日期: 2016-12-12 出版日期: 2017-02-08
中图分类号:  O649  
基金资助: 国家国际科技合作专项(2015CB931902)
通讯作者: 何丹农     E-mail: hdn_nercn@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
代卫国
何丹农

引用本文:

代卫国,何丹农. 手性布洛芬对映体的选择性光电化学氧化[J]. 物理化学学报, 2017, 33(5): 960-967.

Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers. Acta Physico-Chimica Sinca, 2017, 33(5): 960-967.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201702086        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I5/960

图1  S-布洛芬(左)和R-布洛芬(右)的结构式
图2  TiO2 (A), S-ibuprofen-TiO2 (B)和R-ibuprofen-TiO2 (C)纳米棒的扫描电镜图(左一)、透射电镜图(左二)、选区电子衍射图(左三)和高分辨透射电镜图(左四)
图3  TiO2, S-ibuprofen-TiO2和R-ibuprofen-TiO2电极的XRD图
图4  TiO2 (a), S-ibuprofen-TiO2 (b)和R-ibuprofen-TiO2 (c)电极的拉曼光谱图
Electrode Iblank/(mA?cm-2) IS/(mA?cm-2) IR/(mA?cm-2) SPEC
TiO21.772.242.281.09
S-ibuprofen-TiO21.713.812.263.80
R-ibuprofen-TiO21.712.324.003.73
表1  不同电极对布洛芬对映体的光电响应
图5  电子在不同电极表面的传递阻力
图6  S-ibuprofen和R-ibuprofen在S-ibuprofen-TiO2电极(A, B)、R-ibuprofen-TiO2电极(C, D)和TiO2电极(E, F)上光电氧化降解的浓度变化和氧化速率
图7  不同电极对S-ibuprofen和R-ibuprofen的吸附量
1 Deamer D. W. ; Dick R. ; Thiemann W. ; Shinitzky M. Chirality 2007, 19 (10), 751.
doi: 10.1002/chir
2 Cronin J. R. ; Pizzarello S. Science 1997, 275 (5302), 951.
doi: 10.1126/science.275.5302.951
3 Fang Z. ; Guo Z. ; Qin Q. ; Fan J. ; Yin Y. ; Zhang W. J. Chromatogr. Sci 2013, 51 (2), 133.
doi: 10.1093/chromsci/bms117
4 Li W. ; Li Y. ; Fu Y. ; Zhang J. ; Korean J. Chem. Eng 2013, 30 (7), 1448.
doi: 10.1007/s11814-013-0048-1
5 Wang Y. ; Han Q. ; Zhang Q. ; Huang Y. ; Guo L. ; Fu Y. Anal. Methods 5579, 5 (20), 5579.
doi: 10.1039/C3AY40882E
6 Sara? S. ; Chankvetadze B. ; Blaschke G. J. Chromatogr. A 2000, 875 (875), 379.
doi: 10.1016/S0021-9673(99)01177-2
7 Allenmark S. ; Schurig V. J. Mater. Chem 1997, 7 (10), 1955.
doi: 10.1039/A702403G
8 Caballo C. ; Sicilia M. D. ; Rubio S. Anal. Chim. Acta 2013, 761 (761), 102.
doi: 10.1016/j.aca.2012.11.044
9 Ruan Y. F. ; Zhang N. ; Zhu Y. C. ; Zhao W. W. ; Xu J. J. ; Chen H. Y. Acta Phys.-Chim. Sin 2017, 33 (3), 476.
doi: 10.3866/PKU.WHXB201611141
阮弋帆; 张楠; 朱圆城; 赵伟伟; 徐静娟; 陈洪渊. 物理化学学报, 2017, 33 (3), 476.
doi: 10.3866/PKU.WHXB201611141
10 Chen K. ; Liu M. ; Zhao G. ; Shi H. ; Fan L. ; Zhao S. Environ. Sci. Technol 2012, 46 (21), 11955.
doi: 10.1021/es302327w
11 Zhou H. ; Tang Y. ; Zhai J. ; Wang S. ; Tang Z. ; Jiang L. Sensors 2009, 9 (2), 1094.
doi: 10.3390/s90201094
12 Lu Y. Acta Phys.-Chim. Sin 2016, 32 (9), 2185.
doi: 10.3866/PKU.WHXB201605255
陆阳. 物理化学学报, 2016, 32 (9), 2185d.
doi: 10.3866/PKU.WHXB201605255
13 Bai X. ; Zhang X. ; Hua Z. ; Ma W. ; Dai Z. ; Huang X. ; Gu H. J. Alloy. Compd 2014, 599 (3), 10.
doi: 10.1016/j.jallcom.2014.02.049
14 Patel N. ; Jaiswal R. ; Warang T. ; Scarduelli G. ; Dashora A. ; Ahuja B. L. ; Kothari D. C. ; Miotello A. Appl. Catal. BEnviron 2014, 150-151 (1641), 74.
doi: 10.1016/j.apcatb.2013.11.033
15 Kaur J. ; Singhal S. Ceram. Int 2014, 40 (5), 7417.
doi: 10.1016/j.ceramint.2013.12.088
16 Yu H. C. ; Huang X. Y. ; Li H. ; Lei F. H. ; Tan X. C. ; Wei Y. C. ; Wu H. Y. Acta Phys.-Chim. Sin 2014, 30 (11), 2085.
doi: 10.3866/PKU.WHXB201409051
余会成; 黄学艺; 李浩; 雷福厚; 谭学才; 韦贻春; 吴海鹰. 物理化学学报, 2014, 30 (11), 2085.
doi: 10.3866/PKU.WHXB201409051
17 Xu S. W. ; Lin D. Q. ; Y ao ; S. J. Acta Phys.-Chim. Sin 2016, 32 (11), 2811.
doi: 10.3866/PKU.WHXB201609131
徐诗文; 林东强; 姚善泾. 物理化学学报, 2016, 32 (11), 2811.
doi: 10.3866/PKU.WHXB201609131
18 Flippin J. L. ; Huggett D. ; Foran C. M. Aquat. Toxicol 2007, 81 (1), 73.
doi: 10.1016/j.aquatox.2006.11.002
19 Pomati F. ; Netting A. G. ; Calamari D. ; Neilan B. A. Aquat. Toxicol 2004, 67 (4), 387.
doi: 10.1016/j.aquatox.2004.02.001
20 Wei Y. H. ; Liu J. ; Qu D. Acta Microbiol. Sin 2011, 51 (5), 586.
doi: 10.1016/j.aquatox.2004.02.001
21 Yang J. Y. ; Ma H. L. ; Lu B. ; Ma G. H. Acta Optica Sinica 2007, 27 (10), 1909.
doi: 10.3321/j.issn:0253-2239.2007.10.035
杨俊毅; 马洪良; 鲁波; 马国宏. 光学学报, 2007, 27 (10), 1909.
doi: 10.3321/j.issn:0253-2239.2007.10.035
[1] 徐诗文, 林东强, 姚善泾. 布洛芬与人血白蛋白位点II动态结合过程的分子模拟:一种结合途径分析[J]. 物理化学学报, 2016, 32(11): 2811-2818.
[2] 万东华, 郑欧, 周燕, 吴莉瑜. Pluronic嵌段共聚物F127胶团对布洛芬的增溶[J]. 物理化学学报, 2010, 26(12): 3243-3248.
[3] 徐芬;孙立贤;谭志诚;李瑞莲;田琦峰;张涛. 右旋布洛芬的低温热容[J]. 物理化学学报, 2005, 21(01): 1-5.