Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 993-1000    DOI: 10.3866/PKU.WHXB201702087
论文     
快速合成廉价CuMo纳米粒子高效催化氨硼烷水解产氢
杨昆1,姚淇露1,卢章辉1,*(),康志兵2,陈祥树1,*()
1 江西师范大学化学化工学院,无机膜材料工程技术研究中心,南昌330022
2 南昌航空大学航天制造工程学院,南昌330036
Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane
Kun YANG1,Qi-Lu YAO1,Zhang-Hui LU1,*(),Zhi-Bing KANG2,Xiang-Shu CHEN1,*()
1 Jiangxi Inorganic Membrane Materials Engineering Research Centre, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
2 School of Aeronautical Manufacture Engineering, Nanchang Hangkong University, Nanchang 330036, P. R. China
 全文: PDF(3070 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

在无表面活性剂和载体的情况下,使用硼氢化钠作为还原剂,简单快速地合成了CuMo非贵金属纳米粒子.采用X射线粉末衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED)、电感耦合等离子体原子发射光谱(ICP-AES)、光电子能谱(XPS)和比表面积分析(BET)等方法详细地表征了所合成的CuMo纳米粒子,并在室温下将其用于催化氨硼烷水解产氢.所合成的Cu0.9Mo0.1纳米粒子对于氨硼烷水解制氢表现出优异的催化性能,在室温下其转化频率(TOF)达到14.9 min-1,在已报道的Cu催化剂中处于相对较高的值.这种简单的合成方法不仅仅局限于合成CuMo纳米粒子,还可以扩展到合成CuW (3.6 min-1)、CuCr (2 min-1)、NiMo (55.6 min-1)和CoMo (21.7 min-1)纳米粒子,它提供了一种普适的方法合成Cu-M (M = Mo, W, Cr)和TM-Mo (TM = Cu, Ni, Co)纳米粒子作为一系列新型催化剂用于氨硼烷水解.双金属纳米粒子增强的催化活性归因于应力和配体效应诱导的Cu-M纳米粒子的协同促进效果.

关键词: 氨硼烷水解氢能源纳米粒子    
Abstract:

Noble-metal-free CuMo nanoparticles (NPs) without surfactant or support have been facilely prepared using NaBH4 as a reducing agent. The as-prepared CuMo nanocatalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) surface area measurements, and used as catalysts for the hydrolysis of ammonia borane (AB, NH3BH3) at room temperature. The as-synthesized Cu0.9Mo0.1 NPs exhibited a high activity towards the hydrolysis of AB with a turnover frequency (TOF) of 14.9 min-1, a higher value than that reported for Cu catalysts. Our synthesis is not limited to CuMo NPs alone, but can easily be extended to CuW (3.6 min-1), CuCr (2 min-1), NiMo (55.6 min-1), and CoMo (21.7 min-1) NPs, providing a general approach to Cu-M (M = Mo, W, Cr) and TM-Mo (TM = Cu, Ni, Co) NPs as a series of novel catalysts for the hydrolysis of AB. The enhanced activity of bimetallic NPs may be attributed to the synergistic effects of the Cu-M NPs induced by the strain and ligand effects.

Key words: Copper    Ammonia borane    Hydrolysis    Hydrogen energy    Nanoparticle
收稿日期: 2016-12-15 出版日期: 2017-02-08
中图分类号:  O643  
基金资助: 国家自然科学基金(21463012);江西省青年科学家培养对象(20133BCB23011);江西省赣鄱英才555工程资助
通讯作者: 卢章辉,陈祥树     E-mail: luzh@jxnu.edu.cn;cxs66cn@jxnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨昆
姚淇露
卢章辉
康志兵
陈祥树

引用本文:

杨昆,姚淇露,卢章辉,康志兵,陈祥树. 快速合成廉价CuMo纳米粒子高效催化氨硼烷水解产氢[J]. 物理化学学报, 2017, 33(5): 993-1000.

Kun YANG,Qi-Lu YAO,Zhang-Hui LU,Zhi-Bing KANG,Xiang-Shu CHEN. Facile Synthesis of CuMo Nanoparticles as Highly Active and Cost-Effective Catalysts for the Hydrolysis of Ammonia Borane. Acta Physico-Chimica Sinca, 2017, 33(5): 993-1000.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201702087        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I5/993

Fig Scheme 1  Schematic illustration for the preparation and application of the CuMo NPs for the hydrolysis of NH3BH3 under room temperature
Fig 1  XRD patterns of Cu and Cu0.9Mo0.1 NPs
Fig 2  (a, b) Typical TEM images, (c) high resolution TEM image, (d) size distribution and (inset Fig.2b) the corresponding SAED pattern of Cu0.9Mo0.1 NPs
Fig 3  XPS spectra of (a) Cu 2p and (b) Mo 3d for the assynthesized Cu0.9Mo0.1 NPs after Ar etching
Catalyst powderAverage particle size/nmaBET surface area/(m2.g-1)bTOF/ min-1c
Cu15.6±2.814.80.2
Cu0.9Mo0.15.2±0.738.414.9
Cu0.9W0.15.9±0.927.03.6
Cu0.95Cr0.056.8±0.927.72.0
Table 1  TOF, BET surface area and average particle size of different catalysts
Fig 4  (a) Hydrogen generation from the hydrolysis of AB (200 mmol·L-1, 5 mL) catalyzed by Cu, Mo and Cu0.9Mo0.1 NPs at 298 K and (b) plots of time for reaction completion and the corresponding TOF value versus Mo molar content in CuMo NPs (metal/AB = 0.06, molar ratio)
Catalystn(metal)/n(AB)T/KTOF/min -1Ref.
Cu0.9Mo0.10.0629814.9this work
Cu/RGO0.12983.6153
Cu0.9W0.10.062983.6this work
Cu@SiO20.092983.2452
Cu0.95Cr0.050.062982.0this work
zeolite-confined Cu0.0132981.2554
p (AMPS)-Cu0.0693030.7255
Cu2O NPs0.152930.1872
Cu/γ-Al2O30.0182980.2742
Cu NPs0.152930.0672
Table 2  Comparison of TOF value of Cu nanocatalysts for hydrogen generation from the hydrolysis of ammonia borane (AB) at room temperature
Fig 5  Hydrogen generation from the hydrolysis of AB (200 mmol· L-1, 5 mL) catalyzed by Cu, Cu0.9Mo0.1, Cu0.9W0.1 and Cu0.95Cr0.05 NPs at 298 K (metal/AB = 0.06)
Fig 6  (a) Hydrogen generation from the hydrolysis of AB (200 mmol·L-1, 5 mL) and (b) Arrhenius plots and TOF values of AB hydrolytic dehydrogenation catalyzed by Cu0.9Mo0.1 NPs at different temperatures (metal/AB = 0.06)
Fig 7  Durability test for hydrogen generation from the hydrolysis of AB (200 mmol·L-1, 5 mL) catalyzed by Cu0.9Mo0.1 NPs at 298 K (metal/AB = 0.06)
1 Schlapbach L. ; Züttel A. Nature 2001, 414, 353.
doi: 10.1038/35104634
2 Chen P. ; Xiong Z. ; Luo J. ; Lin J. ; Tan K. L. Nature 2002, 420, 302.
doi: 10.1038/nature01210
3 Hannauer J. ; Akdim O. ; Demirci U. B. ; Geantet C. ; Herrmann J. M. ; Miele P. ; Xu Q. Energy Environ. Sci. 2011, 4, 3355.
doi: 10.1039/C1EE01886H
4 Lu L. L. ; Zhang H. J. ; Zhang S.W. ; Li F. L. Angew. Chem.Int. Ed. 2015, 127, 9460.
doi: 10.1002/ange.201500942
5 Liang C. ; Liang S. ; Xia Y. ; Huang H. ; Gan Y. P. ; Tao Y. X. ; Zhang W. K. Acta Phys.-Chim. Sin. 2015, 31 (4), 627.
doi: 10.3866/PKU.WHXB201501282
梁初; 梁升; 夏阳; 黄辉; 甘永平; 陶新永; 张文魁. 物理化学学报, 2015, 31 (4), 627.
doi: 10.3866/PKU.WHXB201501282
6 Chang J. F. ; Xiao Y. ; Luo Z. Y. ; Ge J. J. ; Liu C. P. ; Xing W. Acta Phys.-Chim. Sin 2016, 32 (7), 1556.
doi: 10.3866/PKU.WHXB201604291
常进法; 肖瑶; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学报, 2016, 32 (7), 1556.
doi: 10.3866/PKU.WHXB201604291
7 Wang Z. L. ; Wang H. L. ; Yan J. M. ; Ping Y. ; O S. I. ; Li S. J. ; Jiang Q. Chem. Commun. 2014, 50, 2732.
doi: 10.1039/c3cc49281b
8 Wang Z. L. ; Yan J. M. ; Ping Y. ; Wang H. L. ; Zheng W. T. ; Jiang Q. Angew. Chem. Int. Ed. 2013, 52, 4406.
doi: 10.1002/anie.201301009
9 Zhu Q. L. ; Xu Q. Energy Environ. Sci. 2015, 8, 478.
doi: 10.1039/c4ee03690e
10 Yadav M. ; Xu Q. Energy Environ. Sci. 2012, 5, 9698.
doi: 10.1039/c2ee22937d
11 Lu Z. H. ; Xu Q. Funct. Mater. Lett. 2012, 5, 123001.
doi: 10.1142/S1793604712300010
12 Peng B. ; Chen J. Energy Environ. Sci. 2008, 1, 479.
doi: 10.1039/b809243p
13 Jiang H. L. ; Xu Q. Catal. Today 2011, 170, 56.
doi: 10.1016/j.cattod.2010.09.019
14 Demirci U. B. ; Miele P. J. Power Sources 2010, 195, 4030.
doi: 10.1016/j.jpowsour.2010.01.002
15 Sutton A. D. ; Burrell A. K. ; Dixon D. A. ; Garner E. B. ; Gordon J. C. ; Nakagawa T. ; Ott K. C. ; Robinson J. P. ; Vasiliu M. Science 2011, 311, 1426.
doi: 10.1126/science.1199003
16 Cheng H. F. ; Kamegawa T. ; Mori K. ; Yamashita H. Angew.Chem. Int. Ed. 2014, 53, 2910.
doi: 10.1002/anie.201309759
17 Cheng F. Y. ; Ma H. ; Li Y. M. ; Chen J. Inorg. Chem. 2007, 46, 788.
doi: 10.1021/ic061712e
18 Heldebrant D. J. ; Karkamkar A. ; Hess N. J. ; Bowden M. ; Rassat S. ; Zheng F. ; Rappe K. ; Autrey T. Chem. Mater. 2008, 20, 5332.
doi: 10.1021/cm801253u
19 Li Z. Y. ; Zhu G. S. ; Lu G. Q. ; Qiu S. L. ; Yao X. D. J. Am.Chem. Soc. 2010, 132, 1490.
doi: 10.1021/ja9103217
20 Zhou L. M. ; Zhang T. R. ; Tao Z. L. ; Chen J. Nano Res. 2014, 7, 774.
doi: 10.1007/s12274-014-0438-7
21 Zhu Q. L. ; Li J. ; Xu Q. J. Am. Chem. Soc. 2013, 135, 10210.
doi: 10.1021/ja403330m
22 Ranmachandran P. V. ; Gagare P. D. Inorg. Chem. 2007, 46, 7810.
doi: 10.1021/ic700772a
23 Guo L. L. ; Gu X. J. ; Kang K. ; Wu Y. Y. ; Cheng J. ; Liu P. L. ; Wang T. S. ; Su H. Q. J. Mater. Chem. A 2015, 3, 22807.
doi: 10.1039/C5TA05487G
24 Sun D. H. ; Mazumder V. ; Metin ?. ; Sun S. H. ACS Nano 2011, 5, 6458.
doi: 10.1021/nn2016666
25 Kang J. X. ; Chen T.W. ; Zhang D. F. ; Guo L. Nano Energy 2016, 23, 145.
doi: 10.1016/j.nanoen.2016.03.017
26 Mori K. ; Miyawaki K. ; Yamashita H. ACS Catal. 2016, 6, 3128.
doi: 10.1021/acscatal.6b00715
27 Rej S. ; Hsia C. F. ; Chen T. Y. ; Lin F. C. ; Huang J. S. ; Huang M. H. Angew. Chem. Int. Ed. 2016, 55, 7222.
doi: 10.1002/anie.201603021
28 Yang L. ; Su J. ; Meng X. Y. ; Luo W. ; Cheng G. Z. J. Mater.Chem. A 2013, 1, 10016.
doi: 10.1039/C3TA11835E
29 Wen M. ; Sun B. ; Zhou B. ; Wu Q. S. ; Peng J. J. Mater. Chem. 2012, 22, 11988.
doi: 10.1039/c2jm31311a
30 Chandra M. ; Xu Q. J. Power Sources 2007, 168, 135.
doi: 10.1016/j.jpowsour.2007.03.015
31 Chandra M. ; Xu Q. J. Power Sources 2006, 156, 190.
doi: 10.1016/j.jpowsour.2005.05.043
32 Wang X. ; Liu D. P. ; Song S. Y. ; Zhang H. J. J. Am. Chem.Soc. 2013, 135
33 Chen W. Y. ; Ji J. ; Feng X. ; Duan X. Z. ; Qian G. ; Li P. ; Zhou X. G. ; Chen D. ; Yuan W. K. J. Am. Chem. Soc. 2014, 136
34 Khalily M. A. ; Eren H. ; Akbayrak S. ; Susapto H. H. ; Biyikli N. ; ?zkar S. ; Guler M. O. Angew. Chem. Int. Ed. 2016, 128, 12445.
doi: 10.1002/ange.201605577
35 Zahmak?ran M. ; ?zkar S. Appl. Catal. B: Environ. 2009, 89, 104.
doi: 10.1016/j.apcatb.2008.12.004
36 Yao Q. L. ; Lu Z. H. ; Jia Y. S. ; Chen X. S. ; Liu X. Int. J.Hydrog. Energy 2015, 40, 2207.
doi: 10.1016/j.ijhydene.2014.12.047
37 Yao Q. L. ; Shi W. M. ; Fang G. ; Lu Z. H. ; Zhang X. L. ; Tao D. J. ; Kong D. J. ; Chen X. S. J. Power Sources 2014, 257, 293.
doi: 10.1016/j.jpowsour.2014.01.122
38 Fuku K. ; Hayashi R. ; Takakura S. ; Kamegawa T. ; Mori K. ; Yamashita H. Angew. Chem. Int. Ed. 2013, 52, 7446.
doi: 10.1002/anie.201301652
39 Chen Y. Z. ; Liang L. F. ; Yang Q. H. ; Hong M. C. ; Xu Q. ; Yu S. H. ; Jiang H. L. Mater. Horiz. 2015, 2, 606.
doi: 10.1039/c5mh00125k
40 Xi P. X. ; Chen F. J. ; Xie G. Q. ; Ma C. ; Liu H. Y. ; Shao C.W. ; Wang J. ; Xu Z. H. ; Xu X. M. ; Zeng Z. Z. Nanoscale 2012, 4, 5597.
doi: 10.1039/c2nr31010d
41 Chen Y. Z. ; Xu Q. ; Yu S. H. ; Jiang H. L. Small 2015, 11, 71.
doi: 10.1002/smll.201401875
42 Xu Q. ; Chandra M. J. Power Sources 2006, 163, 364.
doi: 10.1016/j.jpowsour.2006.09.043
43 Li P. Z. ; Aranishi K. ; Xu Q. Chem. Commun. 2012, 48, 3173.
doi: 10.1039/c2cc17302f
44 Cao C. Y. ; Chen C. Q. ; Li W. ; Song W. G. ; Cai W. ChemSusChem 2010, 3, 1241.
doi: 10.1002/cssc.201000229
45 Metin ?. ; Mazumder V. ; ?zkar S. ; Sun S. H. J. Am. Chem.Soc. 2010, 132, 1468.
doi: 10.1021/ja909243z
46 Zhang J. K. ; Chen C. Q. ; Yan W. J. ; Duan F. F. ; Zhang B. ; Gao Z. ; Qin Y. Catal. Sci. Technol. 2010, 6, 2112.
doi: 10.1039/C5CY01497B
47 Xu F. Q. ; Hu X. F. ; Cheng F. Y. ; Liang J. ; Tao Z. L. ; Chen J. Chin. J. Inorg. Chem. 2015, 31 (1), 103.
doi: 10.11862/CJIC.2015.032
徐凤勤; 胡小飞; 程方益; 梁静; 陶占良;陈军. 无机化学学报, 2015, 31 (1), 103.
doi: 10.11862/CJIC.2015.032
48 Yan J. M. ; Zhang X. B. ; Shioyama H. ; Xu Q. J. PowerSources 2010, 195, 1091.
doi: 10.1016/j.jpowsour.2009.08.067
49 Umegaki T. ; Yan J. M. ; Zhang X. B. ; Shioyama H. ; Kuriyama N. ; Xu Q. J. Power Sources 2010, 195, 8209.
doi: 10.1016/j.jpowsour.2010.07.079
50 Li Z. ; He T. ; Liu L. ; Chen W. D. ; Zhang M. ; Wu G. T. ; Chen P. Chem. Sci. 2017, 8, 781.
doi: 10.1039/C6SC02456D
51 Yang Y.W. ; Feng G. ; Lu Z. H. ; Hu N. ; Zhang F. ; Chen X. S. Acta Phys.-Chim. Sin 2014, 30 (6), 1180.
doi: 10.3866/PKU.WHXB201404141
杨宇雯; 冯刚; 卢章辉; 胡娜; 张飞; 陈祥树. 物理化学学报, 2014, 30 (6), 1180.
doi: 10.3866/PKU.WHXB201404141
52 Yao Q. L. ; Lu Z. H. ; Zhang Z. J. ; Chen X. S. ; Lan Y. Q. Sci.Rep. 2014, 4, 7597.
doi: 10.1038/srep07597
53 Yang Y.W. ; Lu Z. H. ; Hu Y. J. ; Zhang Z. J. ; Shi W. M. ; Chen X. S. ; Wang T. T. RSC Adv. 2014, 4, 13749.
doi: 10.1039/c3ra47023g
54 Zahmak?ran M. ; Durap F. ; ?zkar S. Int. J. Hydrog. Energy 2010, 35, 187.
doi: 10.1016/j.ijhydene.2009.10.055
55 Ozay O. ; Inger E. ; Aktas N. ; Sahiner N. Int. J. Hydrog.Energy 2011, 36, 8209.
doi: 10.1016/j.ijhydene.2011.04.140
56 Yao Q. L. ; Lu Z. H. ; Wang Y. Q. ; Chen X. S. ; Feng G. J.Phys. Chem. C 2015, 119, 14167.
doi: 10.1021/acs.jpcc.5b02403
57 Lu Z. H. ; Li J. P. ; Zhu A. L. ; Yao Q. L. ; Huang W. ; Zhou R.Y. ; Zhou R. F. ; Chen X. S. Int. J. Hydrog. Energy 2013, 38, 5330.
doi: 10.1016/j.ijhydene.2013.02.076
58 Lu Z. H. ; Li J. P. ; Feng G. ; Yao Q. L. ; Zhang F. ; Zhou R. Y. ; Tao D. J. ; Chen X. S. ; Yu Z. Q. Int. J. Hydrog. Energy 2014, 39, 13389.
doi: 10.1016/j.ijhydene.2014.04.086
59 Yan J. M. ; Zhang X. B. ; Han S. ; Shioyama H. ; Xu Q. Angew.Chem. Int. Ed. 2008, 47, 2287.
doi: 10.1002/anie.200704943
60 Feng K. ; Zhong J. ; Zhao B. H. ; Zhang H. ; Xu L. ; Sun X. H. ; Lee S. T. Angew. Chem. Int. Ed. 2016, 55, 11950.
doi: 10.1002/ange.201604021
61 Bulut A. ; Yurderi M. ; Ertas ?. E. ; Celebi M. ; Kaya M. ; Zahmakiran M. Appl. Catal. B: Environ. 2016, 180, 121.
doi: 10.1016/j.apcatb.2015.06.021
62 Umegaki T. ; Yan J. M. ; Zhang X. B. ; Shioyama H. ; Kuriyama N. ; Xu Q. Int. J. Hydrog. Energy 2009, 34, 3816.
doi: 10.1016/j.ijhydene.2009.03.003
63 Kalidindi S. B. ; Indirani M. ; Jagirdar B. R. Inorg. Chem. 2008, 47, 7424.
doi: 10.1021/ic800805r
64 Yan J. M. ; Wang Z. L. ; Wang H. L. ; Jiang Q. J. Mater. Chem. 2012, 22, 10990.
doi: 10.1039/c2jm31042b
65 Li P. Z. ; Aijaz A. ; Xu Q. Angew. Chem. Int. Ed. 2012, 51, 6753.
doi: 10.1002/anie.201202055
66 Wen M. C. ; Cui Y.W. ; Kuwahara Y. ; Mori K. ; Yamashita H. ACS Appl. Mater. Inter. 2016, 8, 21278.
doi: 10.1021/acsami.6b04169
67 Yao Q. L. ; Lu Z. H. ; Huang W. ; Chen X. S. ; Zhu J. J. Mater.Chem. A 2016, 4, 8579.
doi: 10.1039/C6TA02004F
68 Wang H. L. ; Yan J. M. ; Li S. J. ; Zhang X.W. ; Jiang Q. J.Mater. Chem. A 2015, 3, 121.
doi: 10.1039/c4ta05360e
69 Patel N. ; Fernandes R. ; Miotello A. J. Catal. 2010, 271, 315.
doi: 10.1016/j.jcat.2010.02.014
70 Fernandes R. ; Patel N. ; Miotello A. ; Jaiswal R. ; Kothari D. C. Int. J. Hydrog. Energy 2012, 37, 2397.
doi: 10.1016/j.ijhydene.2011.10.119
71 Yang K. K. ; Yao Q. L. ; Huang W. ; Cheng X. S. ; Lu Z. H. Int.J. Hydrog. Energy 2017.
doi: 10.1016/j.ijhydene.2016.12.029
72 Kalidindi S. B. ; Sanyal U. ; Jagirdar B. R. Phys. Chem. Chem.Phys. 2008, 10, 5870.
doi: 10.1039/B805726E
[1] 黄翔峰,刘婉琪,熊永娇,彭开铭,刘佳,陆丽君. 功能化磁性纳米粒子在乳状液制备及破乳中的应用及作用机制[J]. 物理化学学报, 2018, 34(1): 49-64.
[2] 钱慧慧,韩潇,肇研,苏玉芹. 柔性Pd@PANI/rGO纸阳极在甲醇燃料电池中的应用[J]. 物理化学学报, 2017, 33(9): 1822-1827.
[3] 宋春冬,张静,高莹,卢圆圆,王芳芳. 基于单质法合成直接Z型CuS-WO3及光催化性能[J]. 物理化学学报, 2017, 33(9): 1891-1897.
[4] 廖珮懿,张辰,张丽君,杨彦章,钟良枢,郭晓亚,王慧,孙予罕. Cu含量对以水滑石为前驱体的Cu/Co/Mn/Al催化剂高级醇合成性能的影响[J]. 物理化学学报, 2017, 33(8): 1672-1680.
[5] 王新雷,马奎,郭丽红,丁彤,程庆鹏,田野,李新刚. 蒸氨法制备铜硅催化剂的二甲醚水蒸气重整制氢性能[J]. 物理化学学报, 2017, 33(8): 1699-1708.
[6] 蒋江民, 聂平, 董升阳, 吴宇婷, 张校刚. 预嵌锂用穿孔集流体对锂离子电容器电化学性能的影响[J]. 物理化学学报, 2017, 33(4): 780-786.
[7] 孙进,丁宗玲,喻远琴,李广. Au纳米粒子表面附近偶氮苯分子的吸收光谱[J]. 物理化学学报, 2017, 33(11): 2199-2206.
[8] 郑霁,邢立锐,李丹. 极长与极短的铜铜距离-吡唑环三核亚铜配合物亲铜作用本质及发光调控[J]. 物理化学学报, 2017, 33(11): 2133-2140.
[9] 李悦, 张婷婷, 王娟, 朱圳, 贾冰, 余江. TiO2负载Cu-Mn复合氧化物催化燃烧正己醛[J]. 物理化学学报, 2016, 32(8): 2084-2092.
[10] 罗邦德, 熊贤强, 许宜铭. CuWO4促进金红石TiO2光催化降解苯酚及其可能机理[J]. 物理化学学报, 2016, 32(7): 1758-1764.
[11] 高琪, 阚彩侠, 李俊龙, 楼叶珂, 魏菁菁. 铜纳米线的液相制备及其表面修饰研究进展[J]. 物理化学学报, 2016, 32(7): 1604-1622.
[12] 刘兆信, 黎维彬. 在类棒状铜锰复合氧化物上甲苯的催化燃烧活性及其失活[J]. 物理化学学报, 2016, 32(7): 1795-1800.
[13] 田春霞,杨军帅,李丽,张小华,陈金华. 新型耐甲醇氧还原电催化剂——氮掺杂中空碳微球@铂纳米粒子复合材料[J]. 物理化学学报, 2016, 32(6): 1473-1481.
[14] 李占国, 张玉婷, 谢强, 李亨利, 孙丽晶, 宋晓峰, 王丽娟. 基于p-6P异质诱导生长酞菁铜薄膜的NO2传感器[J]. 物理化学学报, 2016, 32(4): 1005-1011.
[15] 王元有, 周国强, 张龙, 刘天晴. 铜掺氧化锌多孔纳米棒的水热合成及其光催化性能[J]. 物理化学学报, 2016, 32(11): 2785-2793.