Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 1033-1042    DOI: 10.3866/PKU.WHXB201702101
1 中国科学技术大学化学系,合肥230026
2 阜阳师范学院化学与化工学院,安徽阜阳236037
Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance
Mao-Mao RUAN1,Le-Xin SONG1,*(),Qing-Shan WANG1,*(),Juan XIA2,Zun YANG1,Yue TENG1,Zhe-Yuan XU1
1 Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
2 School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236037, Anhui Province, P. R. China
 全文: PDF(3003 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info

采用水为溶剂, Bi (NO3)3·5H2O为Bi源, C6H5Na3O7·2H2O (TCD)为配体构筑了前驱配合物Bi-TCD,通过配合物分解实现了由纳米片自组装的碳酸氧铋(BS)微米绒球的绿色可控合成,例如, BS的结构和形貌可经由改变反应物浓度和反应时间来调控.我们发现,一方面, TCD的配位作用可致BiO+离子缓慢释出从而调控BS的形成速率;另一方面,尿素在BS材料的形成过程中起碳源、碱源、形貌调控剂和晶体成长控制剂的多重作用,通过调控尿素的浓度制备了三种分别沿着[001]、[110]和[013]优势生长方向的BS晶体.这种合成方法成本低,不需要有机溶剂、模板、表面活性剂、高温和很长的反应时间;产物分散性好;产率高;且拥有可控的形貌和优势生长方向.特别是由纳米片自组装的BS微米绒球对罗丹明B展现出优异的光催化性能.我们相信当前工作将是绿色可控合成和无机微纳材料应用方面的一个重要进展.

关键词: 碳酸氧铋绿色可控合成光催化性能微米绒球二水合柠檬酸三钠    

This work reports a controlled green synthesis of highly monodisperse bismuth subcarbonate (BS) micropompons self-assembled by nanosheets using a simple and facile hydrothermal route in which deionized water, bismuth nitrate pentahydrate (BNP), and urea were used as the solvent, bismuth source, and carbon source respectively. Trisodium citrate dihydrate (TCD) was used as a coordination agent to fabricate a complex precursor. The structure and morphology of the BS materials can be finely modulated by adjusting the initial concentration ratios of the reactants or the reaction time. The presence of TCD decreased the formation rate of BS due to a direct competitive interaction for the BiO+ ions between a coordination equilibrium and a precipitation equilibrium. Urea played a crucial role (e.g., carbon source, alkaline source, morphology control agent, and crystal growth control agent) in the formation of the BS microstructures. We obtained three kinds of BS crystals with preferred orientations along [001], [110], and [013] by adjusting the concentration of urea. Our synthesis approach has the advantages of low cost, high reaction yields, monodisperse particles, controlled morphologies and orientations, and not requiring the use of organic solvents, templates, surfactants, high phototemperatures, and long reaction times. Particularly, when compared with those reported by other investigators, the micropompon material exhibited improved photocatalytic performance for Rhodamine B due to a unique microstructure (large specific surface area, high efficiency of photoelectric conversion, small interfacial chargetransfer resistance, and active {001} exposed facets). These results indicate a major advance in the controlled green synthesis and the application of inorganic micro-and nano-materials.

Key words: Bismuth subcarbonate    Controlled green synthesis    Photocatalytic performance    Micropompons    Trisodium citrate dihydrate
收稿日期: 2016-11-11 出版日期: 2017-02-10
中图分类号:  O643  
基金资助: 安徽省自然科学基金(1508085MB30);中央高校基本科研专项资金(WK2060190052);中央高校基本科研专项资金(WK6030000017)
通讯作者: 宋乐新,王青山     E-mail:;
E-mail Alert


阮毛毛,宋乐新,王青山,夏娟,杨尊,滕越,许哲远. 纳米片自组装的(BiO)2CO3单分散微米绒球的绿色可控合成及其光催化性能[J]. 物理化学学报, 2017, 33(5): 1033-1042.

Mao-Mao RUAN,Le-Xin SONG,Qing-Shan WANG,Juan XIA,Zun YANG,Yue TENG,Zhe-Yuan XU. Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance. Acta Physico-Chimica Sinca, 2017, 33(5): 1033-1042.


Fig Scheme 1  Objective one is achieved by the coordination of Bi (Ⅲ) ions with Cit3- and the slow hydrolysis of urea; objective two is met very satisfactorily due to very large specific surface area and exposed {001} facets of the as-obtained BS material
Fig 1  XRD patterns of the BS-1 and-2 (a), FE-SEM images (b-d), TEM image (e), and HR-TEM image (f) of the BS-1; FE-SEM images (g and h), TEM image (i), and HR-TEM image (j) of the BS-2 The inset in Fig. 1f is the SAED pattern of the same place as shown in Fig. 1f. The inset in Fig. 1j is the SAED pattern of the same place as shown in Fig. 1j.
Fig 2  FE-SEM images and XRD patterns of the BS-1, -2, -3, -4 and-5
Fig 3  Schematic illustration describing the formation process of the BS materials
Fig 4  UV-Vis absorption spectra of the RhB solutions (10 mg?L-1) after being treated by the BS-1 after 0, 10, 20, 30, 40, 50, 60 and 70 min of visible light irradiation (A), the photodegradation degree of RhB at different time points after treated by BS-1, -2 and-3 (B)
Fig 5  Possible photocatalytic mechanism of RhB on the BS-1
Fig 6  UV-Vis diffuse reflectance spectra (A), the plots of (ahν)1/2 vs hν (B) and valence-band XPS spectra (C) of the BS-1, -2 and-3 a is the optical absorption coefficient, h is the Plank's constant, and ν is photon frequency.
Fig 7  PL spectra (λex = 280 nm) of the BS-1, -2 and-3 (A) and the EIS spectra of the BS-1, -2 and-3 under visible light irradiation (B)
1 (a) Chen, X.; Li, C.; Gr?tzel, M.; Kostecki, R.; Mao, S. S.Chem. Soc. Rev. 2012, 41, 7909. doi: 10.1039/C2CS35230C
(b) Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782. doi: 10.1039/C1CS15172J
3 (a) Hou, Y.; Laursen, A. B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I. Angew. Chem. Int. Ed. 2013, 52, 3621. doi: 10.1002/anie.201210294
(b) Li, J.; Zhang, L.; Li, Y.; Yu, Y. Nanoscale 2013, 6, 167.doi: 10.1039/C3NR05246J
(c) Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y. J. Chem. Soc.Rev. 2014, 43, 5276. doi: 10.1039/C4CS00056K
4 (a) Zhou, L.; Wang, W.; Liu, S.; Zhang, L.; Xu, H.; Zhu, W.J. Mol. Catal. A: Chem. 2006, 252, 120. doi: 10.1016/j.molcata.2006.01.052
(b) Singh, M. K.; Ryu, S.; Jang, H. M. Phys. Rev. B, 2005, 72, 132101. doi: 10.1103/PhysRevB.72.132101
(c) Yu, J.; Kudo, A. Adv. Funct. Mater. 2006, 16, 2163.doi: 10.1002/adfm.200500799
(d) He, R. A.; Cao, S.W.; Zhou, P.; Yu, J. G. Chin. J. Catal. 2014, 35, 989. doi: 10.1016/S1872-2067(14)60075-9
5 (a) Huo, Y.; Hou, R.; Chen, X.; Yin, H.; Gao, Y.; Li, H. J. Mater.Chem. A 2015, 3, 14801. doi: 10.1039/C5TA03279B
(b) Huo, Y.; Zhang, J.; Miao, M.; Jin, Y. Appl. Catal. B 2012, 111, 334. doi: 10.1016/j.apcatb.2011.10.016
(c) Xia, J.; Yin, S.; Li, H.; Xu, H.; Xu, L.; Xu, Y. Dalton Trans. 2011, 40, 5249. doi: 10.1039/C0DT01511C
(d)Wu, Y.; Yuan, B.; Li, M.; Zhang, W. H.; Liu, Y.; Li, C.; Chem. Sci. 2015, 6, 1873. doi: 10.1039/C4SC03229B
6 (a) Huang, H.; Wang, J.; Dong, F.; Guo, Y.; Tian, N.; Zhang, Y.; Zhang, T. Cryst. Growth Des. 2015, 15, 534. doi: 10.1021/cg501527k
(b) Dong, F.; Ho, W. K.; Lee, S.; Wu, Z.; Fu, M.; Zou, S.; Huang, Y. J. Mater. Chem. 2011, 21, 12428. doi: 10.1039/C1JM11840D
7 Liang N. ; Zai J. ; Xu M. ; Zhu Q. ; Wei X. ; Qian X. J. Mater.Chem. A 2014, 2, 4208.
doi: 10.1039/C3TA13931J
8 Tang J. ; Zhao H. ; Li G. ; Lu Z. ; Xiao S. ; Chen R. Ind. Eng.Chem. Res. 2013, 52, 12604.
doi: 10.1021/ie401840x
9 Cao X. F. ; Zhang L. ; Chen X. T. ; Xue Z. L. CrystEngComm 2011, 13, 1939.
doi: 10.1039/C0CE00324G
10 Xiong T. ; Dong F. ; Wu Z. B. RSC Adv. 2014, 4, 56307.
doi: 10.1039/C4RA10786A
11 Xiong T. ; Huang H.W. ; Sun Y. J. ; Dong F. J. Mater. Chem. A 2015, 3, 6118.
doi: 10.1039/C5TA00103J
12 Dong F. ; Xiong T. ; Sun Y. J. ; Huang H.W. ; Wu Z. B. J. Mater. Chem. A 2015, 3, 18466.
doi: 10.1039/C5TA05099E
13 Zhao Z. Y. ; Zhou Y. ; Wang F. ; Zhang K. H. ; Yu S. ; Cao K. ACS Appl. Mater. Interfaces 2014, 7, 730.
doi: 10.1021/am507089x
14 (a) Madhusudan, P.; Zhang, J.; Cheng, B.; Liu, G.CrystEngComm 2013, 15, 231. doi: 10.1039/C2CE26639C
(b) Dong, F.; Lee, S. C.; Wu, Z. B.; Huang, Y.; Fu, M.; Ho, W.K.; Zou, S. C.; Wang, B. J. Hazard. Mater. 2011, 195, 346. doi: 10.1016/j.jhazmat.2011.08.050
15 Zhao T. ; Zai J. ; Xu M. ; Zou Q. ; Su Y. ; Wang K. ; Qian X. CrystEngComm 2011, 13, 4010.
doi: 10.1039/C1CE05113J
16 (a) Dong, F.; Sun, Y. J.; Fu, M.; Ho, W. K.; Lee, S. C.; Wu, Z. B.Langmuir 2011, 28, 766. doi: 10.1021/la202752q
(b) Chen, L.; Huang, R.; Yin, S. F.; Luo, S. L.; Au, C. T. Chem.Eng. J. 2012, 193, 123. doi: 10.1016/j.cej.2012.04.023
17 Qin F. ; Li G. ; Wang R. ; Wu J. ; Sun H. ; Chen R. Chem. Eur.J. 2012, 18, 16491.
doi: 10.1002/chem.201201989
18 Dong F. ; Zheng A. M. ; Sun Y. J. ; Fu M. ; Jiang B. Q. ; Ho W.K. ; Lee S. C. ; Wu Z. B. CrystEngComm 2012, 14, 3534.
doi: 10.1039/C2CE06677G
19 Zheng Y. ; Duan F. ; Chen M. Q. ; Xie Y. J. Mol. Catal. A:Chem. 2010, 317, 34.
doi: 10.1016/j.molcata.2009.10.018
20 Ma D. ; Huang S. ; Chen W. ; Hu S. ; Shi F. ; Fan K. J. Phys.Chem. C 2009, 113, 4369.
doi: 10.1021/jp810726d
21 Li X. ; Tang C. J. ; Ai M. ; Dong L. ; Xu Z. Chem. Mater. 2010, 22, 4879.
doi: 10.1021/cm101419w
22 Peng S. ; Li L. ; Tan H. ; Wu Y. ; Cai R. ; Yu H. ; Huang X. ; Zhu P. ; Ramakrishna S. ; Srinivasan M. J. Mater. Chem. A 2013, 1, 7630.
doi: 10.1039/C3TA10951H
23 Xiong M. ; Chen L. ; Yuan Q. ; He J. ; Luo S. L. ; Au C. T. ; Yin S. F. Dalton Trans. 2014, 43, 8331.
doi: 10.1039/C4DT00486H
24 Chen J. ; Guan M. ; Cai W. ; Guo J. ; Xiao C. ; Zhang G. Phys.Chem. Chem. Phys. 2014, 16, 20909.
doi: 10.1039/C4CP02972K
25 Zhang D. ; Li J. ; Wang Q. ; Wu Q. J. Mater. Chem. A 2013, 1, 8622.
doi: 10.1039/C3TA11390F
26 (a) Zhang, H.; Ji, Y.; Ma, X.; Xu, J.; Yang, D. Nanotechnology, 2003, 14, 974. doi: 0957-4484/14/9/307
(b) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459. doi: 10.1021/ja992541y
27 Huang H. ; Li X. ; Wang J. ; Dong F. ; Chu P. K. ; Zhang T. ; Zhang Y. ACS Catalysis 2015, 5, 4094.
doi: 10.1021/acscatal.5b00444
28 Teng Y. ; Song L. X. ; Ponchel A. ; Yang Z. K. ; Xia J. Adv. Mater. 2014, 26, 6238.
doi: 10.1002/adma.201402047
29 Teng Y. ; Song L. X. ; Liu W. ; Xu Z. Y. ; Wang Q. S. ; Ruan M. M. J. Mater. Chem. C 2016, 4, 3113.
doi: 10.1039/C6TC00748A
30 Jiang J. ; Zhao K. ; Xiao X. ; Zhang L. J. Am. Chem. Soc. 2012, 134, 4473.
doi: 10.1021/ja210484t
31 Lee W. ; Kim E. ; Choi J. ; Lee K. B. Cryst. Growth Des. 2015, 15, 884.
doi: 10.1021/cg5016737
32 (a)Wang, B.; Chen, J. S.; Wang, Z.; Madhavi, S.; Lou, X.W. D.Adv. Energy Mater. 2012, 2, 1188. doi: 10.1002/aenm.201200008
(b) Zhan, J. Lin, H. P.; Mou, C. Y. Adv. Mater. 2003, 15, 621.doi: 10.1002/adma.200304600
33 (a) Ye, Y.; Chen, J.; Ding, Q.; Lin, D.; Dong, R.; Yang, L.; Liu, J. Nanoscale 2013, 5, 5887. doi: 10.1039/C3NR01273E
(b)Wang, B.; Zhu, T.; Wu, H. B.; Xu, R.; Chen, J. S.; Lou, X.W. D. Nanoscale 2012, 4, 2145. doi: 10.1039/C2NR11897A
34 Xuan S. ; Hao L. ; Jiang W. ; Gong X. ; Hu Y. ; Chen Z. Nanotechnology 2007, 18, 035602.
doi: 10.1088/0957-4484/18/3/035602
35 Wang W. ; Lu C. ; Ni Y. ; Su M. ; Xu Z. Appl. Catal. B 2012, 127, 28.
doi: 10.1016/j.apcatb.2012.08.002
36 Mullin, J. W. Crystallization, 3rd ed. ; Butterworth-Heinemaan: Oxford, 1997.
37 Voorhees P. W. J. Stat. Phys. 1985, 38, 231.
doi: 10.1007/BF01017860
38 (a) Gokulakrishnan, N.; Peru, G.; Rio, S.; Blach, J.; Léger, ;B.; Grosso, D.; Monflier, E.; Ponchel, A. J. Mater. Chem. A 2014, 2, 6641. doi: 10.1039/C4TA00038Bb(b) Bleta, R.; Menuel, S.; Léger, B.; Da Costa, A.; Monflier, E.; Ponchel, A. RSC Adv. 2014, 4, 8200. doi: 10.1039/C3RA47765G
39 Brunauer S. ; Emmett P. H. ; Teller E. J. Am. Chem. Soc. 1938, 60, 309.
doi: 10.1021/ja01269a023
40 Dong F. ; Liu H. ; Ho W. K. ; Fu M. ; Wu Z. Chem. Eng. J. 2013, 214, 198.
doi: 10.1016/j.cej.2012.10.039
41 (a) Yang, Z. K.; Song, L. X.; Teng, Y.; Xia, J. J. Mater. Chem. A 2014, 2, 20004. doi: 10.1039/C4TA04232H
(b)Wang, Q. S.; Song, L. X.; Teng, Y.; Xia, J.; Zhao, L.; Ruan, M. M. RSC Adv. 2015, 5, 80853. doi: 10.1039/C5RA16571G
43 (a) Zhang, X.; Wang, X. B.; Wang, L.W.; Wang, W. K.; Long, L. L.; Li, W.W.; Yu, H. Q. ACS Appl. Mater. Interfaces 2014, 6, 7766. doi: 10.1021/am5010392
(b) Li, H.; Shang, J.; Ai, Z.; Zhang, L. J. Am. Chem. Soc. 2015, 137, 6393. doi: 10.1021/jacs.5b03105
44 Yu Y. ; Cao C. ; Liu H. ; Li P. ; Wei F. ; Jiang Y. ; Song W. J. Mater. Chem. A 2014, 2, 1677.
doi: 10.1039/C3TA14494A
45 Li F. T. ; Wang Q. ; Ran J. ; Hao Y. J. ; Wang X. J. ; Zhao D. ; Qiao S. Z. Nanoscale 2015, 7, 1116.
doi: 10.1039/C4NR05451B
46 (a) Hu, J.; Xu, G.; Wang, J.; Lv, J.; Zhang, X.; Zheng, Z.; Xie, T.; Wu, Y. New J. Chem. 2014, 38, 4913. doi: 10.1039/C4NJ00794H
(b) Xiong, J.; Cheng, G.; Li, G.; Qin, F.; Chen, R. RSC Adv. 2011, 1, 1542. doi: 10.1039/C1RA00335F
47 (a) Lagunas-Allué, L.; Martínez-Soria, M. T.; Sanz-Asensio, J.; Salvador, A.; Ferronato, C.; Chovelon, J. M. Appl. Catal. B 2010, 98, 122. doi: 10.1016/j.apcatb.2010.05.020
(b) Zhuang, J.; Tian, Q.; Zhou, H.; Liu, Q.; Liu, P.; Zhong, H. J.Mater. Chem. 2012, 22, 7036. doi: 10.1039/C2JM16924J
48 (a) Kortüm, G.; Braun, W.; Herzog, G. Angew. Chem. Int. Ed. 1963, 2, 333. doi: 10.1002/anie.196303331
(b) Sakthivel, S.; Kisch, H. Angew. Chem. Int. Ed. 2003, 42, 4908. doi: 10.1002/anie.200351577
49 (a) Li, G.; Long, G.; Chen, W.; Hu, F.; Chen, Y.; Zhang, Q.Asian J. Org. Chem. 2013, 2, 852. doi: i
(b) Cui, W.; Yuen, J.; Wudl, F. Macromolecules 2011, 44, 7869.doi: 10.1021/ma2017293
(c) Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M. Adv. Funct. Mater. 2006, 16, 1694. doi: 10.1002/adfm.200600171
50 (a) Fu, H.; Pan, C.; Yao, W.; Zhu, Y. J. Phys. Chem. B 2005, 109, 22432. doi: 10.1021/jp052995j
(b) Zhao, Y.; Tan, X.; Yu, T.; Wang, S. Mater. Lett. 2016, 164, 243. doi: 10.1016/j.matlet.2015.10.155
51 (a) Guo, Y. X.; Huang, H.W.; He, Y.; Tian, N.; Zhang, T. R.; Chu, P. K.; An, Q.; Zhang, Y. H. Nanoscale 2015, 7, 11702.doi: 10.1039/C5NR02246K
(b) Zhao, Y.; Yu, T.; Tan, X.; Xie, C.; Wang, S. Dalton Trans. 2015, 44, 20475. doi: 10.1039/C5DT03315B
[1] 姬平利, 王金刚, 朱晓丽, 孔祥正. Ag掺杂型空心TiO2纳米微球的制备与表征及其光催化性能[J]. 物理化学学报, 2012, 28(09): 2155-2161.
[2] 张琼, 贺蕴秋, 陈小刚, 胡栋虎, 李林江, 尹婷, 季伶俐. 氧化钛-氧化石墨插层结构及其光催化性能[J]. 物理化学学报, 2010, 26(03): 654-662.