Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 1010-1016    DOI: 10.3866/PKU.WHXB201702102
论文     
电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变
陈爱喜1,汪宏2,段赛3,张海明1,*(),徐昕4,迟力峰1,*()
1 苏州大学功能纳米与软物质研究院,江苏省碳基功能材料与器件高技术研究重点实验室,江苏苏州215123
2 明斯特大学物理研究所,威廉-克莱姆街10号,明斯特48149,德国
3 皇家理工学院,生物工程学院理论化学与生物系,斯德哥尔摩S-106 91,瑞典
4 复旦大学化学系,上海200433
Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces
Ai-Xi CHEN1,Hong WANG2,Sai DUAN3,Hai-Ming ZHANG1,*(),Xin XU4,Li-Feng CHI1,*()
1 Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu Province, P. R. China
2 Physikalisches Institut, Universit?t Münster, Wilhelm-Klemm Strasse 10, 48149 Münster, Germany
3 Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
4 Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
 全文: PDF(1824 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

自组装单层膜修饰的功能性基底在生物传感,色谱分析,生物相容性材料等方面均具有潜在应用.本文利用原位电化学扫描隧道显微镜(EC-STM)研究了电势诱导的N-异丁酰基-L-半胱氨酸(L-NIBC)分子在Au (111)表面自组装结构的相转变.我们把Au (111)基底分别浸润在纯的NIBC水溶液和pH = 7(磷酸盐缓冲溶液调节)的NIBC溶液中,分别制备了NIBC的α相和β相两种不同的自组装结构.EC-STM观测显示,当改变金的电极电势时, α相和β相的NIBC自组装单层膜出现了多种不同的结构变化.当电压从0.7 V (相对于饱和甘汞电极而言)降低到0.2 V时, α相由有序结构变为无序结构.而对于β相的样品,当E < 0.3 V时,为无序结构;当电极电势增大到0.4 V < E < 0.5 V时,出现γ相;继续增大到0.5 V < E < 0.7 V时,变为β相.另外, EC-STM图像也证实存在β相转变为α相的可能.综合密度泛函理论计算的结果,我们提出, β相转变为α相的原因可以解释为电极电势的变化引起了Au——COO-键的断裂,从而引发分子吸附构型变化而导致相变.

关键词: 自组装硫醇相转变电势诱导电化学扫描隧道显微镜密度泛函理论    
Abstract:

Functional solid substrates modified by self-assembled monolayers (SAMs) have potential applications in biosensors, chromatography, and biocompatible materials. The potential-induced phase transition of N-isobutyryl-L-cysteine (L-NIBC) SAMs on Au (111) surfaces was investigated by in-situ electrochemical scanning tunneling microscopy (EC-STM) in 0.1 mol·L-1 H2SO4 solution. The NIBC SAMs with two distinct structures (α phase and β phase) can be prepared by immersing the Au (111) substrate in pure NIBC aqueous solution and NIBC solution controlled by phosphate buffer at pH 7, respectively. The as-prepared α phase and β phase of NIBC SAMs show various structural changes under the control of electrochemical potentials of the Au (111) in H2SO4 solution. The α phase NIBC SAMs exhibit structural changes from ordered to disordered structures with potential changes from 0.7 V (vs saturated calomel electrode, SCE) to 0.2 V. However, the β phase NIBC SAMs undergo structural changes from disordered structures (E < 0.3 V) to γ phase (0.4 V < E < 0.5 V) and finally to the β phase (0.5 V < E < 0.7 V). EC-STM images also indicate that the phase transition from the β phase NIBC SAMs to the α phase occurs at positive potential. Combined with density functional theory (DFT) calculations, the phase transition from the β phase to the α phase is explained by the potential-induced break of bonding interactions between ——COO- and the negatively charged gold surfaces.

Key words: Self-assembly    Thiol    Phase transition    Potential-induced    Electrochemical scanning tunneling microscopy    Density functional theory
收稿日期: 2016-12-19 出版日期: 2017-02-10
中图分类号:  O647  
基金资助: 国家自然科学基金(91227201);国家自然科学基金(21527805)
通讯作者: 张海明,迟力峰     E-mail: hmzhang@suda.edu.cn;chilf@suda.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈爱喜
汪宏
段赛
张海明
徐昕
迟力峰

引用本文:

陈爱喜,汪宏,段赛,张海明,徐昕,迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.

Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces. Acta Physico-Chimica Sinca, 2017, 33(5): 1010-1016.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201702102        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I5/1010

Fig 1  Steady-state cyclic voltammogram (a) for Au (111) modified by α phase L-NIBC SAMs (solid line) in 0.1 mol·L-1 H2SO4 aqueous solutions with scan rate of 10 mV·s-1. The CV of bare Au (111) (dotted line) recorded in the same conditions is also shown for comparison. EC-STM images of α phase L-NIBC SAMs show potential dependent structural changes from ordered α phase structures at 0.65 V (b) to partially disordered structures at 0.25 V (c). The white ring marks the same place in each image. A high resolution STM image of α phase structures (obtained in air conditions) and a proposed model are shown in panel (d) and (e), respectively. The unit cell is a rectangular (4 × $\sqrt 3 $) lattice with two molecules in one unit.
Fig 2  Steady-state cyclic voltammogram (a) and EC-STM images (b-d) of β phase L-NIBC SAMs in 0.1 mol·L-1 H2SO4 aqueous solutions. Disordered structures are observed at potential negative of 0.3 V (b). With increasing of the potential, a new phase (γ phase) emerges at 0.45 V (c). More positive potential gives rise to the phase transition from the γ phase to the β phase (d). Insets in panels (c) and (d) are the high resolution EC-STM image of the γ phase and the β phase L-NIBC SAMs, respectively. The white ring marks the same place in each image. All images are of 100 nm × 100 nm.
Fig 3  Schematic illustration of potential-induced phase transition of NIBC SAMs in 0.1 mol·L-1 H2SO4 solutions
Fig 4  Optimized structure of deprotonated L-NIBC anion adsorbed on Au32δ cluster at B3LYP/6-31+G (d, p)/Lanl2dz level (a) δ = +1, (b) δ = 0, (c) δ =-1
1 Malem F. ; Mandler D. Anal. Chem. 1993, 65, 37.
doi: 10.1021/ac00049a009
2 Prime K. L. ; Whitesides G. M. J. Am. Chem. Soc. 1993, 115, 10714.
doi: 10.1021/ja00076a032
3 Gardner T. J. ; Frisbie C. D. ; Wrighton M. S. J. Am. Chem. Soc. 1995, 117, 6927.
doi: 10.1021/ja00131a015
4 Dong D. ; Zhang S. ; Zhu T. ; Gan L. B. ; Liu Z. F. ActaPhys.-Chim. Sin. 2001, 17 (11), 978.
doi: 10.3866/PKU.WHXB20011104
董栋; 张生; 朱涛; 甘良兵; 刘忠范. 物理化学学报, 2001, 17 (11), 978.
doi: 10.3866/PKU.WHXB20011104
5 Jiang P. ; Cheng G. J. ; Zhang H. L. ; Cai S. M. ; Liu Z. F. ActaPhys.-Chim. Sin. 1998, 14 (7), 609.
doi: 10.3866/PKU.WHXB19980707
江鹏; 程广军; 张浩力; 蔡生民; 刘忠范. 物理化学学报, 1998, 14 (7), 609.
doi: 10.3866/PKU.WHXB19980707
6 Zhou X. S. ; Xu X. M. ; Zhong H. P. ; Long L. S. ; Huang R.B. ; Xie Z. X. ; Zheng L. S. ; Mao B.W. Acta Phys.-Chim. Sin. 2005, 21 (9), 949.
doi: 10.3866/PKU.WHXB20050901
周小顺; 徐晓蜜; 钟慧萍; 龙腊生; 黄荣斌; 谢兆雄; 郑兰荪; 毛秉伟. 物理化学学报, 2005, 21 (9), 949.
doi: 10.3866/PKU.WHXB20050901
7 (a) Gan, H. ; Tang, K. J. ; Sun, T. L. ; Hirtz, M. ; Li, Y. ; Chi, L. F. ; Butz, S. ; Fuchs, H. Angew. Chem. Int. Ed. 2009, 48, 5282. doi: 10.1002/anie.200806295
8 Zhu F. ; Yan J.W. ; Sun C. F. ; Zhang X. ; Mao B.W. J. Electroanal. Chem. 2010, 640, 51.
doi: 10.1016/j.jelechem.2010.01.006
9 Zhang J. D. ; Welinder A. C. ; Chi Q. J. ; Ulstrup J. Phys. Chem. Chem. Phys. 2011, 13, 5526.
doi: 10.1039/c0cp02183k
10 Costa D. ; Pradier C. M. ; Tielens F. ; Savio L. Surf. Sci. Rep. 2015, 70, 449.
doi: 10.1016/j.surfrep.2015.10.002
11 Yan J. ; Ouyang R. ; Jensen P. S. ; Ascic E. ; Tanner D. ; Mao B. ; Zhang J. ; Tang C. ; Hush N. S. ; Ulstrup J. ; Reimers J. R. J. Am. Chem. Soc. 2014, 136, 17087.
doi: 10.1021/ja508100c
12 Gao B. ; Kuang Y. M. ; Liao Y. ; Dong Z. C. Chin. J. Chem.Phys. 2012, No. 2, 231.
doi: 10.1088/1674-0068/25/02/231-234
13 Vericat C. ; Vela M. E. ; Benitez G. ; Carrob P. ; Salvarezza R.C. Chem. Soc. Rev. 2010, 39, 1805.
doi: 10.1039/b907301a
14 Pensa E. ; Cortes E. ; Corthey G. ; Carro P. ; Vericat C. ; Fonticelli M. H. ; Benitez G. ; Rubert A. A. ; Salvarezza R. C. Acc. Chem. Res. 2012, 45, 1183.
doi: 10.1021/ar200260p
15 De Leener G. ; Evoung-Evoung F. ; Lascaux A. ; Mertens J. ; Porras-Gutierrez A. G. ; Le Poul N. ; Lagrost C. ; Over D. ; Leroux Y. R. ; Reniers F. ; Hapiot P. ; Le Mest Y. ; Jabin I. ; Reinaud O. J. Am. Chem. Soc. 2016, 138, 12841.
doi: 10.1021/jacs.6b05317
16 Zhang H. M. ; Li Y. ; Xu X. ; Sun T. L. ; Fuchs H. ; Chi L. F. Langmuir 2010, 26, 7343.
doi: 10.1021/la904237d
17 Poirier G. E. ; Pylant E. D. Science 1996, 272, 1145.
doi: 10.1126/science.272.5265.1145
18 Poirier G. E. ; Fitts W. P. ; White J. M. Langmuir 2001, 17, 1176.
doi: 10.1021/la0012788
19 Qian Y. L. ; Yang G. H. ; Yu J. J. ; Jung T. A. ; Liu G. Y. Langmuir 2003, 19, 6056.
doi: 10.1021/la0267701
20 Cyganik P. ; Buck M. ; Strunskus T. ; Shaporenko A. ; Witte G. ; Zharnikov M. ; Woll C. J. Phys. Chem. C 2007, 111, 16909.
doi: 10.1021/jp073979k
21 Hagenstrom H. ; Schneeweiss M. A. ; Kolb D. M. Langmuir 1999, 15, 2435.
doi: 10.1021/ja00076a032
22 (a) Schweizer, M. ; Hagenstrom, H. ; Kolb, D. M. Surf. Sci. 2001, 490, L627. doi: 10.1016/S0039-6028(01)01377-2
23 Baunach T. ; Ivanova V. ; Scherson D. A. ; Kolb D. M. Langmuir 2004, 20, 2797.
doi: 10.1021/la035389t
24 Dai Y. G. ; Meier C. ; Ziener U. ; Landfester K. ; Taubert C. ; Kolb D. M. Langmuir 2007, 23, 11058.
doi: 10.1021/la701479r
25 Zhou W. P. ; Baunach T. ; Ivanova V. ; Kolb D. M. Langmuir 2004, 20, 4590.
doi: 10.1021/la049903m
26 Seo K. ; Borguet E. J. Phys. Chem. C 2007, 111, 6335.
doi: 10.1021/jp064493r
27 Zhang J. D. ; Demetriou A. ; Welinder A. C. ; Albrecht T. ; Nichols R. J. ; Ulstrup J. Chem. Phys. 2005, 319, 210.
doi: 10.1016/j.chemphys.2005.04.019
28 Su G. J. ; Zhang H. M. ; Wan L. J. ; Bai C. L. ; Wandlowski T. J. Phys. Chem. B 2004, 108, 1931.
doi: 10.1021/jp035095g
29 Mayer D. ; Dretschkow T. ; Ataka K. ; Wandlowski T. J. Electroanal. Chem. 2002, 524, 20.
doi: 10.1016/S0022-0728(01)00754-9
[1] 卢天,陈沁雪. 通过价层电子密度分析展现分子电子结构[J]. 物理化学学报, 2018, 34(5): 503-513.
[2] 尹凡华,谭凯. 符合独立五元环规则的C100(417)Cl28形成机理的密度泛函理论研究[J]. 物理化学学报, 2018, 34(3): 256-262.
[3] 钟爱国,李嵘嵘,洪琴,张杰,陈丹. 从能量和信息理论视角理解单取代烷烃的异构化[J]. 物理化学学报, 2018, 34(3): 303-313.
[4] 丁晓琴,丁俊杰,李大禹,潘里,裴承新. 基于概念密度泛函理论磷酸酯类反应性物质毒性预测[J]. 物理化学学报, 2018, 34(3): 314-322.
[5] 尹玥琪,蒋梦绪,刘春光. Keggin型多酸负载的单原子催化剂(M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-)活化氮气分子的密度泛函理论计算研究[J]. 物理化学学报, 2018, 34(3): 270-277.
[6] 陈驰,张雪,周志有,张新胜,孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[7] 刘玉玉,李杰伟,薄一凡,杨磊,张效霏,解令海,仪明东,黄维. 芴基张力半导体结构和光电性质的理论研究[J]. 物理化学学报, 2017, 33(9): 1803-1810.
[8] 徐位云,汪丽莉,宓一鸣,赵新新. Fe原子吸附对单层WS2结构和性质的影响[J]. 物理化学学报, 2017, 33(9): 1765-1772.
[9] 王琳.,肖立志.,郭龙.,廖广志.,张岩.,戈革.. 纳米自组装γ-Al2O3孔隙结构的核磁共振表征[J]. 物理化学学报, 2017, 33(8): 1589-1598.
[10] 张洪芝,张志庆,王芳,周亭,王秀凤,张国栋,刘婷婷,刘淑贞. 结构DNA纳米技术应用新进展[J]. 物理化学学报, 2017, 33(8): 1520-1532.
[11] 韩波,程寒松. 镍族金属团簇在催化加氢过程中的应用[J]. 物理化学学报, 2017, 33(7): 1310-1323.
[12] 鞠广凯,陶占良,陈军. α-MnO2纳米管自组装微球的可控制备及电化学性能[J]. 物理化学学报, 2017, 33(7): 1421-1428.
[13] 郭姿含,胡竹斌,孙真荣,孙海涛. 有机半导体的电子电离能、亲和势和极化能的密度泛函理论研究[J]. 物理化学学报, 2017, 33(6): 1171-1180.
[14] 韩磊,彭丽,蔡凌云,郑旭明,张富山. 液态聚乙二醇CH2剪切振动和扭转振动——拉曼光谱和密度泛函理论计算[J]. 物理化学学报, 2017, 33(5): 1043-1050.
[15] 李玲玲, 陈韧, 戴戬, 孙野, 张作良, 李晓亮, 聂小娃, 宋春山, 郭新闻. 苯和甲醇在H-ZSM-5催化剂上甲基化的反应机理[J]. 物理化学学报, 2017, 33(4): 769-779.