Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 949-959    DOI: 10.3866/PKU.WHXB201702152
论文     
冲击载荷下TATB晶体滑移和各向异性的分子动力学研究
周婷婷1,*(),宋华杰1,黄风雷2,*()
1 北京应用物理与计算数学研究所,北京100094
2 北京理工大学,爆炸科学与技术国家重点实验室,北京100081
The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation
Ting-Ting ZHOU1,*(),Hua-Jie SONG1,Feng-Lei HUANG2,*()
1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, P. R. China
2 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
 全文: PDF(1840 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

采用ReaxFF反应力场和分子动力学方法,研究了1,3,5-三氨基-2,4,6-三硝基苯(TATB)炸药晶体在沿不同方向冲击载荷下的滑移和各向异性。冲击方向分别垂直于(101)、(111)、(011)、(110)、(010)、(100)和(001)晶面,冲击强度为10 GPa。研究结果表明,各冲击方向下可能被激发的滑移系均在{001}面,而其它滑移系均因很大的剪切阻力不容易被激发,这与TATB晶体沿c轴的层状结构和平面分子结构相符。预测了七个冲击方向下最容易被激发的滑移系,分别为(101)/{001}<100>、(111)/{001}<010>、(011)/{001}<010>、(110)/{001}<010>、(010)/{001}<1$\bar 1$0>、(100)/{001}<120>和(001)/{001}<010>。TATB晶体的冲击响应具有各向异性,动力学过程中体系的应力、能量、温度和化学反应都依赖于冲击方向。对垂直于(100)和(001)晶面的冲击,体系在滑移过程中遭遇的剪切阻力较高、持续时间较长,使得能量和温度较快升高,化学反应较容易发生;对垂直于(101)和(111)晶面的冲击,体系在滑移过程中遭遇的阻力较小且出现次数少,使得能量和温度缓慢升高,化学反应不易发生;对其余冲击方向,体系的响应居中。据此评价了7个冲击方向的相对敏感程度:(101)、(111)<(011)、(110)、(010)<(100)、(001)。本研究有助于在微观层次深入认识动载荷下TATB的响应机制、结构与性能的关系,为高能低感炸药的设计和研制提供理论参考。

关键词: TATB冲击滑移各向异性ReaxFF分子动力学    
Abstract:

The slip and anisotropy of 2, 4, 6-triamino-1, 3, 5-trinitrobenzene (TATB) crystal under shock loading along various directions were investigated using molecular dynamics simulation combined with reactive force field (ReaxFF). The shock strength was approximately 10 GPa, and seven shock orientations normal to the (101), (111), (011), (110), (010), (100), and (001) crystal planes were considered. For these shock directions, the slip systems that are likely to be activated are predicted to be on the {001} plane, whereas others that could not be activated exhibit large shear stress barriers. These slip characteristics are consistent with the layered structure of TATB crystal along the c axis and the planar structure of TATB molecule. The most favorable slip systems are suggested to be (101)/{001}<100>, (111)/{001}<010>, (011)/{001}<010>, (110)/{001}<010>, (010)/{001}<1$\bar 1$0>, (100)/{001}<120>, and (001)/{001}<010>. TATB crystal exhibits anisotropic response to shock loading, that is, the shear stress, energy, temperature, and chemical reactivity during shear deformation depend on shock direction. For the (100) and (001) shock planes, the shear stress barrier is relatively high and lasts for a long time, leading to fast energy accumulation and temperature increment, which, in turn, increase the chemical reactivity. In contrast, for the (101) and (111) shock planes, the small shear stress barrier results in slow energy accumulation and temperature rise and, thus, low chemical reactivity. The (011), (110), and (010) shock planes exhibit intermediate responses. The sensitivity of the seven shock planes can be ranked as follows: (101), (111)<(011), (110), (010)<(100), (001). This study provides microscale insight into the response mechanisms and structure-property relationship of TATB crystal under dynamic loading and may facilitate designing explosives with high energy but low sensitivity.

Key words: TATB    Shock    Slip    Anisotropy    ReaxFF    Molecular dynamics
收稿日期: 2016-10-10 出版日期: 2017-02-15
中图分类号:  O642  
基金资助: 国家自然科学基金(11402031);国家自然科学基金(11372053);国家自然科学基金(11221202)
通讯作者: 周婷婷,黄风雷     E-mail: zhou_tingting@iapcm.ac.cn;huangfl@bit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周婷婷
宋华杰
黄风雷

引用本文:

周婷婷,宋华杰,黄风雷. 冲击载荷下TATB晶体滑移和各向异性的分子动力学研究[J]. 物理化学学报, 2017, 33(5): 949-959.

Ting-Ting ZHOU,Hua-Jie SONG,Feng-Lei HUANG. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation. Acta Physico-Chimica Sinca, 2017, 33(5): 949-959.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201702152        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I5/949

图1  TATB的晶体及分子结构
Shock planeCompression rate/%p/GPapxx/GPapyy/GPapzz/GPapxy/GPapxz/GPapyz/GPa
(101)159.13612.1167.4027.889-0.668-1.5070.748
(111)169.05612.4186.5718.1792.250-3.276-1.555
(011)1510.6819.24811.31311.4822.592-0.310-1.021
(110)1410.72013.1318.04210.9863.225-1.264-0.980
(010)139.8409.4529.77610.2923.192-1.164-1.465
(100)159.55812.1557.3239.197-0.689-0.0961.271
(001)189.9105.5166.85917.3541.3772.1992.137
表1  各冲击方向的压缩量和NVT-MD优化后压缩体系的应力张量
Shock plane Slip system RSS/GPa
(001) {201}<10$\bar 2$> 6.423
{301}<10$\bar 3$> 6.071
{$\bar 1$01}<101> 5.913
{401}<10$\bar 4$> 5.561
{021}<01$\bar 2$> 5.447
{031}<01$\bar 3$> 5.239
{011}<01$\bar 1$> 5.062
{041}<01$\bar 4$> 4.968
{001}<120> 2.061
{001}<010> 1.826
{001}<110> 1.742
表2  沿垂直于(001)晶面的冲击方向下潜在滑移系的RSS值
Shock planeSlip systemτ0/GPaτbarrier/GPaT/Ktreaction/psNTATB/%
(001){201}<10$\bar 2$>6.47615.85918600.850
{301}<10$\bar 3$>5.96911.38419660.950
{$\bar 1$01}<101>5.9597.58014130.903.61
{401}<10$\bar 4$>5.5689.72718010.950
{021}<01$\bar 2$>5.29210.58816190.800
{031}<01$\bar 3$>4.98213.64615910.850
{011}<01$\bar 1$>4.7238.16616461.050.26
{041}<01$\bar 4$>4.94913.29018210.800
{001}<120>2.0652.5717845.4597.45
{001}<010>1.9001.6936925.6098.73
{001}<110>1.8512.7947274.9097.22
表3  垂直于(001)晶面的冲击下潜在滑移系的MD模拟结果
图2  沿着垂直于(001)晶面的冲击方向下,五组潜在滑移系的剪切阻力、能量、温度和未反应TATB的百分比随时间的变化
图3  冲击晶面为(001),TATB晶体内不同滑移系在剪切过程中的分子间接触情况
Shock planeSlip systemτ0/GPaτbarrier/GPaT/Ktreaction/psNTATB/%Sensitivity
(101) {001}<120>0.1790.753(0.813/1.033)459 100
{001}<110>0.1540.454(0.908/1.015)482 100
{001}<100>0.1190.406(1.020)470 100I
(111){001}<010>0.3450.850502 100I
{001}<120>0.360.905494899.92
{001}<110>0.2940.92(0.797)532899.94
(011){001}<110>0.2162.017(1.052/1.171)576899.94
{001}<120>0.2341.637(1.617/0.875)540 100
{001}<010>0.1340.681(0.538/0.712)552 100M
(110){001}<100>0.8350.423(0.769/0.775)6174.198.76
{001}<010>0.3090.601(0.235/0.482)5657.299.54M
{001}<110>0.3981.797(0.899)6991.8594.51
{001}<120>0.1981.544(0.482)6152.3095.19
(010){001}<010>0.3101.5656732.2595.70
{001}<1$\bar 2$0>0.3291.704623698.96
{001}<1$\bar 1$0>0.3561.4245987.699.65M
(100){001}<110>0.3842.3666844.696.39
{001}<120>0.3071.5236556.7599.17S
(001){001}<120>2.0652.5717845.4597.45
{001}<010>1.91.693(0.384)6925.6098.73S
{001}<110>1.8512.7947274.9097.22
表4  沿着垂直于(101)、(111)、(011)、(110)、(010)、(100)和(001)晶面的七个冲击方向下可能被激发的滑移系的MD模拟结果
图4  沿着垂直于(101)、(111)、(011)、(110)、(010)、(100)和(001)晶面的七个冲击方向下7组最易被激发的滑移系在剪切过程中的应力、能量、温度以及化学反应随时间的变化
1 Jackson C. L. ; Wing J. F. J. Am. Chem. Soc. 1887, 9, 354.
2
3
4
5 Cady H. H. ; Larson A. C. Acta Cryst. 1965, 18, 485.
doi: 10.1107/S0365110X6500107X
6 Agrawal J. P. Progr. Energy Combust. Sci. 1998, 24, 1.
doi: 10.1016/S0360-1285(97)00015-4
7 Wu C. J. ; Fried L. E. J. Phys. Chem. A 2000, 104, 6447.
doi: 10.1021/jp001019r
8 Xiao H. M. The Theory of the Molecular Orbits for Nitrocompound Beijing: National Defence Industry Press, 1993.
肖鹤鸣. 硝基化合物的分子轨道理论, 北京: 国防工业出版社, 1993.
9 Manaa M. R. ; Gee R. H. ; Fried L. E. J. Phys. Chem. A 2002, 106, 8806.
doi: 10.1021/jp0259972
10 Roszak S. ; Gee R. H. ; Balasubramanian K. ; Fried L. E. Chem. Phys. Lett. 2003, 374, 286.
doi: 10.1016/S0009-2614(03)00727-9
11 Zhang C. Y. ; Wang X. ; Huang H. J. Am. Chem. Soc. 2008, 130, 8359.
doi: 10.1021/ja800712e
12 Ojeda O. U. ; Cagin T. J. Phys. Chem. B 2011, 115, 12085.
doi: 10.1021/jp2007649
13 Pravica M. ; Yulga B. ; Liu Z. X. ; Tschauner O. Phys. Rev. B 2007, 76, 064102.
doi: 10.1103/PhysRevB.76.064102
14 Pravica M. ; Yulga B. ; Tkachev S. ; Liu Z. X. J. Phys. Chem. A 2009, 113, 9133.
doi: 10.1021/jp903584x
15 Manaa M. R. ; Fried L. E. J. Phys. Chem. C 2012, 116, 2116.
doi: 10.1021/jp205920n
16 Dong H. S. Chin. J. Energy Mater. 2004, 12, 1.
17 Kolb J. R. ; Rizzo H. F. Propellants Explos. Pyrotech. 1979, 4, 10.
doi: 10.1002/prep.19790040104
18 Gee R. H. ; Roszak S. ; Balasubramanian K. ; Fried L. E. J. Chem. Phys. 2004, 120, 7059.
doi: 10.1063/1.1676120
19 Sun J. ; Kang B. ; Xue C. ; Liu Y. ; Xia Y. X. ; Liu X. F. ; Zhang W. Journal of Energetic Materials 2010, 28, 189.
doi: 10.1080/07370650903401254
20 Taylor D. E. J. Phys. Chem. A 2013, 117, 3507.
doi: 10.1021/jp4005289
21 Bedrov D. ; Borodin O. ; Smith G. D. ; Sewell T. D. ; Dattelbaum D. M. ; Stevens L. L. J. Chem. Phys. 2009, 131, 224703.
doi: 10.1063/1.3264972
22 Kroonblawd M. P. ; Sewell T. D. J. Chem. Phys. 2013, 139, 074503.
doi: 10.1063/1.4816667
23 Kroonblawd M. P. ; Sewell T. D. J. Chem. Phys. 2014, 141, 184501.
doi: 10.1063/1.4901206
24 Mathew N. ; Sewell T. D. ; Thompson D. L. J. Chem. Phys. 2015, 143, 094706.
doi: 10.1063/1.4929806
25 Liu H. ; Zhao J. ; Du J. ; Gong Z. ; Ji G. F. ; Wei D. Q. Phys. Lett. A 2007, 367, 383.
doi: 10.1016/j.physleta.2007.03.048
26 Stevens L. L. ; Velisavljevic N. ; Hooks D. E. ; Dattelbaum D. M. ; Propellants Explos. Pyrotech. 2008, 33, 286.
doi: 10.1002/prep.200700270
27 Valenzano L. ; Slough W. J. ; Perger W. AIP Conf. Proc. 2012, 1426, 1191.
doi: 10.1063/1.3686493
28 Budzevich M. M. ; Landerville A. C. ; Conroy M. W. ; Lin Y. ; Oleynik I. I. ; White C. T. J. Appl. Phys. 2010, 107, 113524.
doi: 10.1063/1.3361407
29 Bowden F. P. ; Yoffe A. D. Initiation and Growth of Explosion in Liquids and Solids 1st ed Cambridge: Cambridge University Press, 1985.
30 Dick J. J. ; Mulford R. N. ; Spencer W. J. ; Pettit D. R. ; Garcia E. ; Shaw D. C. J. Appl. Phys. 1991, 70, 3572.
doi: 10.1063/1.349253
31 Armstrong R.W. ; Ammon H. L. ; Elban W. L. ; Tsai D. H. Thermochim. Acta 2002, 384, 303.
doi: 10.1016/S0040-6031(01)00786-9
32 Dick J. J. ; Ritchie J. P. J. Appl. Phys. 1994, 76, 2726.
doi: 10.1063/1.357576
33 Dick J. J. J. Appl. Phys. 1997, 81, 601.
doi: 10.1063/1.364201
34 Yoo C. S. ; Holmes N. C. ; Souers P. C. ; Wu C. J. ; Ree F. H. ; Dick J. J. J. Appl. Phys. 2000, 88, 70.
doi: 10.1063/1.373626
35 Dick J. J. ; Hooks D. E. ; Menikoff R. ; Martinez A. R. J. Appl. Phys. 2004, 96, 374.
doi: 10.1063/1.1757026
36 Menikoff R. ; Dick J. J. ; Hooks D. E. J. Appl. Phys. 2005, 97, 023529.
doi: 10.1063/1.1828602
37 Jaramillo E. ; Sewell T. D. ; Strachan A. Phys. Rev. B 2007, 76, 064112.
doi: 10.1103/PhysRevB.76.064112
38 Ramos K. J. ; Hooks D. E. ; Sewell T. D. ; Cawkwell M. J. J. Appl. Phys. 2010, 108, 066105.
doi: 10.1063/1.3485807
39 Cawkwell M. J. ; Ramos K. J. ; Hooks D. E. ; Sewell T. D. J. Appl. Phys. 2010, 107, 063512.
doi: 10.1063/1.3305630
40 Bedrov D. ; Hooper J. B. ; Smith G. D. ; Sewell T. D. J. Chem. Phys. 2009, 131, 034712.
doi: 10.1063/1.3177350
41 Eason R. M. ; Sewell T. D. J. Phys. Chem. C 2012, 116, 2226.
doi: 10.1021/jp206826d
42 Conroy M. W. ; Oleynik I. I. ; Zybin S. V. ; White C. T. Phys. Rev. B 2008, 77, 094107.
doi: 10.1103/PhysRevB.77.094107
43 Conroy M. W. ; Oleynik I. I. ; Zybin S. V. ; White C. T. J. Appl. Phys. 2008, 104, 053506.
doi: 10.1063/1.2973689
44 Zybin S. V. ; GoddardI W. A. II. ; Xu P. ; van Duin A. C. T. ; Thompson A. P. Appl. Phys. Lett. 2010, 96, 081918.
doi: 10.1063/1.3323103
45 An Q. ; Liu Y. ; Zybin S. V. ; Kim H. ; Goddard III W. A. J. Phys. Chem. C 2012, 116, 10198.
doi: 10.1021/jp300711m
46 Zhou T. T. ; Zybin S. V. ; Liu Y. ; Huang F. L. ; Goddard W. A. III. J. Appl. Phys. 2012, 111, 124904.
doi: 10.1063/1.4729114
47 Song H. J. ; Zhou T. T. ; Huang F. L. ; Hong T. Acta Phys.-Chim. Sin. 2014, 30, 2024.
doi: 10.3866/PKU.WHXB201409192
宋华杰; 周婷婷; 黄风雷; 洪滔. 物理化学学报, 2014, 30, 2024.
doi: 10.3866/PKU.WHXB201409192
48 Kuklja M. M. ; Rashkeev S. N. Appl. Phys. Lett. 2007, 90, 151913.
doi: 10.1063/1.2719031
49 Kuklja M. M. ; Rashkeev S. N. J. Phys. Chem. Lett. 2010, 1, 363.
doi: 10.1021/jz9001967
50 Kuklja M. M. ; Rashkeev S. N. Journal of Energetic Materials 2010, 28, 66.
doi: 10.1080/07370651003639397
51 Zhang C. Y. J. Phys. Chem. B 2007, 111, 14295.
doi: 10.1021/jp0770357
52 Mathew N. ; Sewell T. D. Philosophical Magazine 2015, 95, 424.
doi: 10.1080/14786435.2015.1006706
53 van Duin A. C. T. ; Dasgupta S. ; Lorant F. ; Goddard III W. A. J. Phys. Chem. A 2001, 105, 9396.
doi: 10.1021/jp004368u
54 Zhou T. T. ; Shi Y. D. ; Huang F. L. Acta Phys.-Chim. Sin. 2012, 28, 2605.
doi: 10.3866/PKU.WHXB201208031
周婷婷; 石一丁; 黄风雷. 物理化学学报, 2012, 28, 2605.
doi: 10.3866/PKU.WHXB201208031
55 Strachan A. ; van Duin A. C. T. ; Dasgupta S. ; Chakraborty D. ; Goddard III W. A. Phys. Rev. Lett. 2003, 91, 098301.
doi: 10.1103/PhysRevLett.91.098301
56 Nomura K. ; Kalia R. K. ; Nakano A. ; Vashishta P. Appl. Phys. Lett. 2007, 91, 183109.
doi: 10.1063/1.2804557
57 An Q. ; Zybin S. V. ; Goddard III W. A. ; Botero A. J. ; Blanco M. ; Luo S. N. Phys. Rev. B 2011, 84, 220101.
doi: 10.1103/PhysRevB.84.220101
58 Liu L. C. ; Liu Y. ; Zybin S. V. ; Goddard III W. A. J. Phys. Chem. A 2011, 115, 11016.
doi: 10.1021/jp201599t
59 Zhou T. T. ; Lou J. F. ; Zhang Y. G. ; Song H. J. ; Huang F. L. Phys. Chem. Chem. Phys. 2016, 18, 17627.
doi: 10.1039/C6CP02015A
60 Wang Y. N. ; Chen S. J. ; Dong X. C. Dislocation Theory and Its Application Beijing: Metallurgical Industry Press, 2007.
王亚男; 陈树江; 董希淳. 位错理论及其应用, 北京: 冶金工业出版社, 2007.
61
[1] 刘夫锋,范玉波,刘珍,白姝. ZAβ3和Aβ16-40亲和作用的分子机理解析[J]. 物理化学学报, 2017, 33(9): 1905-1914.
[2] 汪秀秀,赵健伟,余刚. 孔洞和孪晶界对银纳米线形变行为联合影响的分子动力学模拟[J]. 物理化学学报, 2017, 33(9): 1773-1780.
[3] 王子民,郑默,谢勇冰,李晓霞,曾鸣,曹宏斌,郭力. 基于ReaxFF力场的对硝基苯酚臭氧氧化分子动力学模拟[J]. 物理化学学报, 2017, 33(7): 1399-1410.
[4] 曹了然,张春煜,张鼎林,楚慧郢,张跃斌,李国辉. 分子动力学模拟技术在生物分子研究中的进展[J]. 物理化学学报, 2017, 33(7): 1354-1365.
[5] CHENFang,LIUYuan-Yuan,WANGJian-Long,SuNing-Ning,LILi-Jie,CHENHong-Chun. 混合溶剂对β-HMX结晶形貌影响的分子动力学模拟[J]. 物理化学学报, 2017, 33(6): 1140-1148.
[6] 陈贻建,周洪涛,葛际江,徐桂英. 双链阴离子表面活性剂1-烷基-癸基磺酸钠在气/液界面聚集行为:分子动力学模拟研究[J]. 物理化学学报, 2017, 33(6): 1214-1222.
[7] 常孟方,李磊,曹潇丹,贾梦辉,周加胜,陈缙泉,徐建华. 基于时间分辨方法的LicT蛋白荧光动力学特性[J]. 物理化学学报, 2017, 33(5): 1065-1070.
[8] 彭莉娟, 姚倩, 王静波, 李泽荣, 朱权, 李象远. RDX及其衍生物高温热解的反应分子动力学模拟[J]. 物理化学学报, 2017, 33(4): 745-754.
[9] 刘青康,宋文平,黄其涛,张广玉,侯珍秀. 热辅助存储磁盘硅掺杂非晶碳薄膜氧化的ReaxFF反应力场分子动力学模拟[J]. 物理化学学报, 2017, 33(12): 2472-2479.
[10] 孙怡然,于飞,马杰. 纳米受限水的研究进展[J]. 物理化学学报, 2017, 33(11): 2173-2183.
[11] 张陶娜,徐雪雯,董亮,谭昭怡,刘春立. 分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J]. 物理化学学报, 2017, 33(10): 2013-2021.
[12] 陆阳. TiO2光催化剂的晶面效应研究进展[J]. 物理化学学报, 2016, 32(9): 2185-2196.
[13] 王云赫, 秦圆, 姚曼, 王旭东, 李淑颖, 王栋, 陈婷. BIC和HA体系的氢键驱动的HOPG表面手性自组装分子动力学模拟[J]. 物理化学学报, 2016, 32(9): 2255-2263.
[14] 苗竹, 张海, 杨海瑞. 升温烧结过程中TiO2纳米颗粒的原子分类分析(I):表面原子识别[J]. 物理化学学报, 2016, 32(8): 2113-2118.
[15] 苗竹, 张海, 杨海瑞. 升温烧结过程中TiO2纳米颗粒的原子分类分析(II):烧结颈[J]. 物理化学学报, 2016, 32(8): 2119-2124.