Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 1051-1056    DOI: 10.3866/PKU.WHXB201702201
论文     
二氟沙星激发态氧化损伤氨基酸和脱氧鸟苷酸的激光光解研究
李海霞1,刘艳成2,唐睿智2,张鹏2,马六逵1,魏驰原1,王文锋2,*()
1 南京工业大学浦江学院,南京211132
2 中国科学院上海应用物理研究所,上海201800
Reactions of Triplet-State Difloxacin with Amino Acids and dGMP: A Laser Flash Photolysis Study
Hai-Xia LI1,Yan-Cheng LIU2,Rui-Zhi TANG2,Peng ZHANG2,Liu-Kui MA1,Chi-Yuan WEI1,Wen-Feng WANG2,*()
1 Pujiang Institute, Nanjing Tech University, Nanjing 211132, P. R. China
2 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
 全文: PDF(1064 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

本文利用激光光解法研究了二氟沙星激发态氧化损伤氨基酸和脱氧鸟苷酸等生物小分子。实验结果显示二氟沙星激发态水溶液氧化损伤色氨酸,酪氨酸,半胱氨酸和脱氧鸟苷酸的速率常数分别为1.97×108,1.48×108,1.72×108,6.92×107 dm3·mol-1·s-1。通过光谱分析和实验数据分析可以得出激发态二氟沙星氧化损伤色氨酸,酪氨酸,半胱氨酸和脱氧鸟苷酸是通过电子转移的方式进行的。

关键词: 激光光解二氟沙星激发态氨基酸    
Abstract:

The reactions of triplet-state difloxacin (DFX) with various amino acids and deoxyguanylic acid in aqueous media were studied using laser flash photolysis. Tryptophan, tyrosine, cysteine, and 2'-deoxyguanosine-5'-monophosphate (dGMP) were found to completely quench the triplet state of DFX in aqueous solution, the corresponding second-order rate constants being 1.97×108, 1.48×108, 1.72×108, and 6.92×107 dm3·mol-1·s-1. The quenching mechanism involves electron transfer to the photoexcited triplet state of DFX from the tryptophan, tyrosine, cysteine, and dGMP moieties, followed by fast protonation of the resulting DFX anion radical.

Key words: Laser flash photolysis    Difloxacin    Triplet state    Amino acid
收稿日期: 2016-11-18 出版日期: 2017-02-20
中图分类号:  O644  
基金资助: 国家自然科学基金(21173252)
通讯作者: 王文锋     E-mail: wangwen@sinap.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李海霞
刘艳成
唐睿智
张鹏
马六逵
魏驰原
王文锋

引用本文:

李海霞,刘艳成,唐睿智,张鹏,马六逵,魏驰原,王文锋. 二氟沙星激发态氧化损伤氨基酸和脱氧鸟苷酸的激光光解研究[J]. 物理化学学报, 2017, 33(5): 1051-1056.

Hai-Xia LI,Yan-Cheng LIU,Rui-Zhi TANG,Peng ZHANG,Liu-Kui MA,Chi-Yuan WEI,Wen-Feng WANG. Reactions of Triplet-State Difloxacin with Amino Acids and dGMP: A Laser Flash Photolysis Study. Acta Physico-Chimica Sinca, 2017, 33(5): 1051-1056.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201702201        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I5/1051

图Scheme 1  Structure of DFX
图1  Transient difference absorption spectra observed at 100 ns (-■-), 1 μs (), and 2 μs () after subjecting a nitrogensaturated aqueous solution of 1 × 10-4 mol·L-1 FX in 2 × 10-3 mol·L-1 phosphate buffer (pH 7.17) to 8 mJ of 355 nm laser pulse Inset shows the decay profiles of the signal at 720 nm obtained after laser excitation of 1 × 10-4 mol·L-1 aqueous DFX solution.
图2  Transient difference absorption spectra observed at 100 ns (-■-), 500 ns (), 1 μs (), and 3 μs () after subjecting a nitrous oxide-saturated aqueous solution of 1.5 × 10-4 mol·L-1 DFX in 2 × 10-3 mol·L-1 phosphate buffer (pH 7.17) to 8 mJ of a 355 nm laser pulse Inset shows the decay profiles of the signal at 620 nm obtained after laser excitation of aqueous 1.5 × 10-4 mol·L-1 DFX solutions saturated with N2 (-■-), air () and O2 ().
图3  Transient difference absorption spectra observed at different pH conditions after pulse radiolysis of an aqueous nitrogen-saturated 2 × 10-4 mol·L-1 DFX solution in 5 × 10-3 mol·L-1 phosphate buffer (pH 7.17) which contained 1% t-butanol and nitrogen saturated aqueous Inset shows the decay of the signal at 380 nm at different pH values (1: pH = 10, 2: pH = 7.0, 3: pH = 3.9).
图Scheme 2  Equilibrium between protonated forms of DFX
Amino acid pH Abbreviated formula
tryptophan 7.4 TrpH
tyrosine 7 TyrOH
11 TyrO-
cysteine 6.5 CysH
10.5 Cys-
表1  Different amino acids abbreviated formula in different pH solution
图4  Transient absorption spectra observed at 5 μs after 355 nm laser flash excitation of 1.0 × 10-4 mol·L-1 DFX in an aqueous N2-saturated 2.0 × 10-3 mol·L-1 phosphate buffer (pH = 7.0) solution containing different concentrations of TrpH: in the absence of TrpH () and in the presence of 5.0 × 10-3 mol·L-1 TrpH (-○-) Inset (left) shows the plot of the decay in absorbance at 620 nm of solutions containing different concentrations of TrpH (1: 0 mmol·L-1, 2: 1 mmol·L-1, 3: 2 mmol·L-1); the (right) inset shows the buildup trace at 500 nm obtained by subtracting the trace of the 2.0 × 10-3 mol·L-1 TrpH at 500 nm from the trace at 500 nm of the solution without TrpH.
图5  Transient absorption spectra observed at 6 μs after 355 nm laser flash excitation of 1.0 × 10-4 mol·L-1 DFX in an aqueous N2-saturated 2.0 × 10-3 mol·L-1 phosphate buffer (pH = 7.0) solution containing different concentrations of TyrOH: in the absence of TyrOH () and in the presence of 5.0 × 10-3 mol·L-1 TyrOH (-○-) Inset (right) shows the buildup trace at 410 nm obtained by subtracting the trace at 410 nm of the 5.0 × 10-3 mol·L-1 TyrOH solution from the trace at 410 nm of the solution without TyrOH; the (left) inset shows the plot of the decay in absorbance at 620 nm of solutions containing different concentrations of TyrOH (1: 0 mmol·L-1, 2: 5 mmol·L-1).
图6  Transient absorption spectra observed at 6 μs after 355 nm laser flash excitation of 1.0 × 10-4 mol·L-1 DFX in an aqueous N2-saturated 2.0 × 10-3 mol·L-1 phosphate buffer (pH = 7.0) solution containing different concentrations of CysH: in the absence of CysH (-■-); in the presence of 3.0 × 10-3 mol·L-1 CysH () Inset (right) shows the buildup trace at 420 nm obtained by subtracting the trace at 420 nm of a solution with 5.0 × 10-3 mol·L-1 CysH from the trace at 420 nm of a solution without CysH; the (left) inset shows the plot of decay in absorbance at 620 nm of solutions containing different concentrations of CysH.
Compound TrpH TyrOH CysH dGMP
DFX 1.97 × 108 3.14 × 108 - 6.92 × 107
表2  Quenching rate constants (L·mol-1·s-1) of DFX triplet states by amino acids and dGMP
图7  Transient absorption spectra observed at 10 μs after 355 nm laser flash excitation of 1.0 × 10-4 mol·L-1 DFX in an aqueous N2-saturated 2.0 × 10-3 mol·L-1 phosphate buffer (pH = 7.0) solution containing different concentrations of dGMP: in the absence of dGMP (-■-); in the presence of 10 mmol·L-1 dGMP () Inset (left) shows the plot of decay in absorbance at 620 nm of solutions containing different concentrations of dGMP from 0 mol·L-1 to 1 × 10-2 mol·L-1; the (right) inset shows the correlation of the 3DFX* decay rate constant at 620 nm, kobs, with the concentration of dGMP.
1 Cadet J. ; Ravanat J. L. ; Douki T. J. Photochem. Photobiol. BBiol. 2001, 63, 88.
doi: 10.1016/S1011-1344(01)00206-8
2 Ali D. ; Verma A. ; Pathak A. K. ; Ali H. ; Hans R. K. Chem. Ecol. 2016, 32, 446.
doi: 10.1080/02757540.2016.1146711
3 Pattison D. I. ; Rahmanto A. S. ; Davies M. J. Photochem. Photobiol. Sci. 2012, 11, 38.
doi: 10.1039/c1pp05164d
4 Davies M. J. Biochem. Biophys. Res. Commun. 2003, 305, 761.
doi: 10.1016/S0006-291x(03)00817-9
5 Levine R. L. ; Stadtman E. R. Exp. Gerontol. 2001, 36, 1495.
doi: 10.1016/S0531-5565(01)00135-8
6 Anjum N. A. ; Sofo A. ; Scopa A. ; Roychoudhury A. ; Gill S.S. ; Iqbal M. ; Lukatkin A. S. ; Pereira E. ; Duarte A. C. ; Ahmad I. Environ. Sci. Pollut. Res. 2015, 22, 4099.
doi: 10.1007/s11356-014-3917-1
7 Lu C. Y. ; Liu Y. Y. Biochimica Et Biophysica Acta-General Subjects 2002, 1571, 71.
doi: 10.1016/S0304-4165(02)00215-5
8 Aubert C. ; Vos M. H. ; Mathis P. ; Eker A. P. M. ; Brettel K. Nature 2000, 407, 926.
doi: 10.1038/35014644
9 Heelis P. F. ; Okamura T. ; Sancar A. Biochemistry 1990, 29, 5694.
doi: 10.1021/bi00476a008
10 Lu C. Y. ; Lin W. Z. ; Wang W. F. ; Han Z. H. ; Yao S. ; Lin N. Y. Phys. Chem. Chem. Phys. 2000, 2, 329.
doi: 10.1039/A908492D
11 Eshleman J. R. ; Norris A. L. ; Sadakari Y. ; Debeljak M. ; Borges M. ; Harrington C. ; Lin E. ; Brant A. ; Barkley T. ; Almario J. A. ; Topazian M. ; Farrell J. ; Syngal S. ; Lee J. H. ; Yu J. ; Hruban R. H. ; Kanda M. ; Canto M. I. ; Goggins M. Clin. Gastroenterol. Hep. 2015, 13, 963.
doi: 10.1016/j.cgh.2014.11.028
12 Shafirovich V. ; Kropachev K. ; Anderson T. ; Liu Z. ; Kolbanovskiy M. ; Martin B. D. ; Sugden K. ; Shim Y. ; Chen X. J. ; Min J. H. ; Geacintov N. E. J. Biol. Chem. 2016, 291, 5309.
doi: 10.1074/jbc.M115.693218
13 Sugiyama H. ; Saito I. J. Am. Chem. Soc. 1996, 118, 7063.
doi: 10.1021/ja9609821
14 Houk K. N. ; Prat F. ; Foote C. S. J. Am. Chem. Soc. 1998, 120, 845.
doi: 10.1021/ja972331q
15 Gorityala B. K. ; Guchhait G. ; Fernando D. M. ; Deo S. ; McKenna S. A. ; Zhanel G. G. ; Kumar A. ; Schweizer F. Angew. Chem. Int. Edit. 2016, 55, 555.
doi: 10.1002/anie.201508330
16 Stahlmann R. ; Lode H. Drugs 1999, 58, 37.
doi: 10.2165/00003495-199958002-00007
17 Lipsky B. A. ; Baker C. A. Clinical Infectious Diseases 1999, 28, 352.
doi: 10.1086/515104
18 Karran P. ; Brem R. DNA Repair 2016, 44, 178.
doi: 10.1016/j.dnarep.2016.05.024
19 Perucca P. ; Savio M. ; Cazzalini O. ; Mocchi R. ; Maccario C. ; Sommatis S. ; Ferraro D. ; Pizzala R. ; Pretali L. ; Fasani E. ; Albini A. ; Stivala L. A. J. Photochem. Photobiol. B-Biol. 2014, 140, 57.
doi: 10.1016/j.jphotobiol.2014.07.006
20 Lhiaubet-Vallet V. ; Bosca F. ; Miranda M. A. Photochem. Photobiol. 2009, 85, 861.
doi: 10.1111/j.1751-1097.2009.00548.x
21 Zuo Z. H. ; Yao S. D. ; Luo J. A. ; Wang W. F. ; Zhang J. S. ; Lin N. Y. J. Photochem. Photobiol. B-Biol. 1992, 15, 215.
doi: 10.1016/1011-1344(92)85125-E
22 Yao S. D. ; Sheng S. G. ; Cai J. H. ; Zhang J. S. ; Lin N. Y. Radiat. Phys. Chem. 1995, 46, 105.
doi: 10.1016/0969-806X(94)00120-9
23 Buxton G. V. ; Greenstock C. L. ; Helman W. P. ; Ross A. B. J. Phys. Chem. Ref. Data 1988, 17, 513.
doi: 10.1063/1.555805
24 Bensasson R. V. Bulletin Des Societes Chimiques Belges 1983, 92, 615.
doi: 10.1002/bscb.19830920606
25 Land E. J. ; Prutz W. A. Int. J. Radiat. Biol. 1979, 36, 75.
doi: 10.1080/09553007914550831
26 Steenken S. Chem. Rev. 1989, 89, 503.
doi: 10.1021/cr00093a003
[1] 刘娇,霍继存,张敏,董献堆. 含不同杂原子共轭单元的有机光敏染料的超快发光动力学[J]. 物理化学学报, 2018, 34(4): 424-436.
[2] 朱倩, 曹朝暾, 曹晨忠. 间位基团激发态取代基常数的扩展及应用[J]. 物理化学学报, 2017, 33(4): 729-735.
[3] 金颖淳,郑旭明. 2, 4-二硫代尿嘧啶的紫外吸收光谱和共振拉曼光谱[J]. 物理化学学报, 2017, 33(10): 1989-1997.
[4] 罗青青, 曹朝暾, 曹晨忠. 取代基效应对二取代二苯基硝酮还原电位的影响[J]. 物理化学学报, 2016, 32(7): 1691-1698.
[5] 曹洪玉, 高凌星, 唐乾, 苏晋红, 郑学仿. 紫外光诱导氧合型肌红蛋白氧化反应及机理[J]. 物理化学学报, 2016, 32(4): 872-878.
[6] 杨林, 李阳, 陈淑, 张静, 张敏, 王鹏. 有机染料敏化太阳电池中激发态弛豫和电子注入的超快光谱研究[J]. 物理化学学报, 2016, 32(1): 329-336.
[7] 崔颖娜, 尹静梅, 贾颖萍, 李慎敏. N,N'-二-[3-羟基-4-(2-苯并噻唑)苯基]脲的光谱实验与密度泛函理论研究[J]. 物理化学学报, 2015, 31(9): 1647-1654.
[8] 佟拉嘎, 刘金艳, 王岑晨, 荣华, 李巍. 微/纳米ZnO绒球的制备及其在自然光下催化降解有机染料性能[J]. 物理化学学报, 2015, 31(8): 1615-1620.
[9] 李海霞, 周保昌, 刘艳成, 唐睿智, 张鹏, 李景烨, 王文锋. 二氟沙星在中性水溶液中的光化学性质[J]. 物理化学学报, 2014, 30(11): 2134-2141.
[10] 宁爱民, 孟磊, 赵仲麟, 郑先福, 宛新生. 牛血清白蛋白与十二烷基硫酸钠作用的机理[J]. 物理化学学报, 2013, 29(12): 2639-2646.
[11] 魏婧, 程文旦. 芳香性氨基酸的二次谐波非线性光学性质[J]. 物理化学学报, 2013, 29(10): 2215-2220.
[12] 杨乐乐, 刘佳, 李悦, 刘坤, 阮文娟. 手性糖基锌卟啉对手性氨基酸甲酯的分子识别[J]. 物理化学学报, 2013, 29(09): 1877-1885.
[13] 吴晓敏, 袁晓辉, 薛书蕾, 查岭生, 王光利, 张海军. 模型多肽Trp-Cage折叠形成机制的研究进展[J]. 物理化学学报, 2013, 29(09): 1842-1850.
[14] 马锴果, 方坦, 白金义, 郭海清. 3-巯基异丁酸衍生物对碲化镉量子点水相合成的影响[J]. 物理化学学报, 2013, 29(08): 1814-1818.
[15] 周丹红, 李苗苗, 崔俐丽. 用于监控过氧化氮的近红外荧光探针的光物理性质及PET机理[J]. 物理化学学报, 2013, 29(07): 1453-1460.