Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 927-940    DOI: 10.3866/PKU.WHXB201702211
研究论文     
多巴胺在其第三受体蛋白结构中的分子通道上传输动力学
李爱静, 谢炜, 王明, 徐四川
云南大学化学科学与工程·药学学院, 自然资源药物化学教育部重点实验室, 昆明 650091
Molecular Dynamics of Dopamine to Transmit through Molecular Channels within D3R
LI Ai-Jing, XIE Wei, WANG Ming, XU Si-Chuan
Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology and Pharmacy, Yunnan University, Kunming 650091, P. R. China
 全文: PDF(2432 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

本文基于多巴胺与其第三受体复合蛋白(D3R)结构,采用分子动力学技术Gromacs 4.5 程序中的伞形样本方法,研究多巴胺在多巴胺第三受体蛋白结构中的运动轨迹及其过程中自由能变化,探讨多巴胺在其分子通道上传输运动机制动力学。分子模拟表明,处在发挥神经递质作用部位的多巴胺,通过D3R结构中的功能分子通道沿着y+轴朝细胞外方向传输运动的自由能变化数值为134.6 kJ·mol-1,沿着y-轴朝细胞内传输运动的自由能变化为211.5 kJ·mol-1。在D3R结构中,多巴胺沿着x+、x-、z+、z-轴朝细胞双层膜方向传输运动的自由能变化分别为65.8、245.0、551.4、172.8 kJ·mol-1,数值说明DOP更容易沿着x+轴方向从TM5(第五跨膜螺旋)与TM6(第六跨膜螺旋)缝隙之间离开D3R内部结构。处在细胞间隙空间的自由多巴胺,在等温等压条件下沿着逆y+轴方向通过多巴胺第三受体内功能分子通道,到达发挥神经递质作用的部位是一个自发过程,因为在该轨迹上多巴胺分子与受体相互作用是一个负自由能变化(-134.6 kJ·mol-1)。所以,多巴胺与多巴胺受体很容易相互结合,发挥神经递质作用。发挥了神经递质功能作用的多巴胺分子,沿着x+轴方向的保护分子通道从TM5 与TM6 缝隙之间离开D3R内部结构,避免过度发挥多巴胺神经递质功能作用。根据多巴胺功能和保护分子通道观点,我们提出帕金森病新病理和精神分裂症新病理。论文还探讨多巴胺分子通道理论及其新病理应用于治疗控制这两种病症及其相关药物研究开发。

关键词: 多巴胺多巴胺受体分子通道分子模拟帕金森病精神分裂症    
Abstract:

In this paper, based on the complex protein structure of third dopamine receptor (D3R) with dopamine (DOP), we have studied the trajectories with the free energy changes of D3R for DOP to move along its molecular channels and then probed the molecular dynamics mechanism of DOP transmitting along molecular channels, using molecular dynamics techniques including the potential mean force (PMF) of umbrella samplings from the GROMACS program (version 4.5). Simulation results show that for DOP located in the space region of D3R to act as a neurotransmitter transmitting toward the outside of cell, the free energy change is 134.6 kJ·mol-1 along the functional molecular channel of y+ axis within D3R, and 211.5 kJ·mol-1 along the y-axis towards the intracellular part. Within the structure of D3R, the free energy changes are 65.8, 245.0, 551.4, 172.8 kJ·mol-1 for DOP to transmit along the x+, x-, z+, z-axes, respectively, towards cell bilayer membrane, indicating that DOP leaves more easily along the x+ axis through the gap between TM5 (the fifth transmembrane helix) and TM6 (the sixth transmembrane helix) from the internal structure of D3R. When free DOP molecules are located in the intercellular spaces, once they start moving along the inverse y+ axis direction under constant pressure and temperature, they spontaneously pass through the functional molecular channel to reach the space region of D3R to act as a neurotransmitter, because the free energy change between DOP and D3R along the inverse y+ axis direction is negative (-134.6 kJ·mol-1). Therefore, DOP interacting with D3R can easily play the role of a neurotransmitter. After DOP molecules have performed the actions of a neurotransmitter, they leave the internal structure of D3R along the x+ axis of a protective molecular channel through the gap between TM5 and TM6 to avoid excessive function as transmitter. According to dopamine functional and protective molecular channels, we suggest new pathologies and the finding and development of new drugs for Parkinson's disease and schizophrenia.

Key words: Dopamine    Dopamine receptor    Molecular channel    Molecular simulation    Parkinson's disease    Schizophrenia
收稿日期: 2016-10-19 出版日期: 2017-02-21
中图分类号:  O641  
基金资助:

国家自然科学基金(21163024,21563032)资助项目

通讯作者: 徐四川     E-mail: sichuan@ynu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李爱静
谢炜
王明
徐四川

引用本文:

李爱静, 谢炜, 王明, 徐四川. 多巴胺在其第三受体蛋白结构中的分子通道上传输动力学[J]. 物理化学学报, 2017, 33(5): 927-940.

LI Ai-Jing, XIE Wei, WANG Ming, XU Si-Chuan. Molecular Dynamics of Dopamine to Transmit through Molecular Channels within D3R. Acta Phys. -Chim. Sin., 2017, 33(5): 927-940.

链接本文:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/10.3866/PKU.WHXB201702211        http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/Y2017/V33/I5/927

(1) Carlsson, A.; Waters, N.; Waters, S.; Carlsson, M. L. Brain Res. 2000, 31, 342. doi: 10.1016/S0165-0173(99)00050-8
(2) Li, F.; Shu, S. Y.; Bao, X. M. Neurosci. Bull. 2003, 19 (6), 405.[李凡, 舒斯云, 包新民. 神经科学通报, 2003, 19 (6), 405.]
(3) Suri, R. E.; Bargas, J.; Arbib, M. A. Neuroscience 2001, 103, 65. doi: 10.1016/S0306-4522(00)00554-6
(4) Salum, C.; Roque, S. A.; Pickering, A. Neurocomputing 1999, 2627, 845. doi: 10.1016/S0925-2312(98)00129-5
(5) Bian, F. Y.; Shi, G. J.; Chi, S. M.; Xu, S. C. The PerspectiveInsight into the Pathology of Parkinsonism Using the MolecularChannel Theory of Dopamine inside its Receptor MembraneProtein. Chinese Chemical Society at the Second NationalConference on Bio-physical Chemistry (NCBPC2) and theInternational Forum on Development of Chinese Bio-PhysicalChemistry, Wuhan University, Wuhan, China, Oct 15-18, 2012.
(6) Xu, S. C.; Shi, G. J.; Chi, S. M. The Active Site Residues andthe Molecular Channels for Dopamine within D3R MembraneProtein. The 28thCCS (Chinese Chemical Society) Congress, Sichuan University, Chengdu, China, April 13-16, 2012.
(7) Kebabian, J.W.; Calne, D. B. Nature 1979, 277 (5692), 93.doi: 10.1038/277093a0
(8) Bunzow, J. R.; Van Tol, H. H. M.; Grandy, D. K.; Albert, P.; Salon, J.; Christie, M. Nature 1988, 336, 783. doi: 10.1038/336783a0
(9) Dearry, A.; Gingrich, J. A.; Falardeau, P.; Fremeau, R. T.; Bates, M. D.; Caron, M. G. Nature 1990, 347, 72. doi: 10.1038/347072a0
(10) Sokoloff, P.; Giros, B.; Martres, M. P.; Bouthenet, M. L.; Schwartz, J. C. Nature 1990, 347, 146. doi: 10.1038/347146a0
(11) Van Tol, H. H.; Bunzow, J. R.; Guan, H. C.; Sunahara, R. K.; Seeman, P.; Niznik, H. B.; Civelli, O. Nature 1991, 350, 610.doi: 10.1038/350610a0
(12) Sunahara, R. K.; Guan, H. C.; O'Dowd, B. F.; Seeman, P.; Laurier, L. G.; Ng, G.; George, S. R.; Torchia, J.; Van Tol, H. H.; Niznik, H. B. Nature 1991, 350, 614. doi: 10.1038/350614a0
(13) Chien, E. Y. T.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M. A.; Shi, L.; Newman, A. H.; Javitch, J. A.; Cherezov, V.; Stevens, R. C. Science 2010, 330, 1091.doi: 10.1126/science.1197410
(14) Jin, Y.; Wang, Y.; Bian, F. Y.; Shi, Q.; Ge, M. F.; Wang, S.; Zhang, X. K.; Xu, S. C. Acta Phys. -Chim. Sin. 2011, 27 (10), 2432. [金毅, 王悦, 卞富永, 史强, 葛茂发, 王树, 张兴康, 徐四川. 物理化学学报, 2011, 27 (10), 2432.] doi: 10.3866/PKU.WHXB20111001
(15) Xu, S. C.; Deng, S, R.; Ma, L. Y.; Shi, Q.; Ge, M. F.; Zhang, X.K. Acta Phys. -Chim. Sin. 2009, 25, 1290. [徐四川, 邓圣荣, 马丽英, 史强, 葛茂发, 张兴康. 物理化学学报, 2009, 25, 1290.] doi: 10.3866/PKU.WHXB20090701
(16) Hoff, B.; Strandberg, E.; Ulrich, A. S.; Tieleman, D. P.; Posten, C. Biophys. J. 2005, 88, 1818. doi: 10.1529/biophysj.104.052399
(17) Janosi, L.; Gorfe, A. A. J. Chem. Theory Comput. 2010, 6, 3267.doi: 10.1021/ct100381g
(18) Su, Z. Y.; Wang, Y. T. J. Phys. Chem. B 2011, 115, 796.doi: 10.1021/jp107599v
(19) Merlino, A.; Vitiello, G.; Grimaldi, M.; Sica, F.; Busi, E.; Basosi, R.; D'Ursi, A. M.; Fragneto, G.; Paduano, L.; D'Errico, G. J. Phys. Chem. B 2012, 116, 401. doi: 10.1021/jp204781a
(20) Polyansky, A. A.; Volynsky, P. E.; Nolde, D. E.; Arseniev, A. S.; Efremov, R. G. J. Phys. Chem. B 2005, 109, 15052.doi: 10.1021/jp0510185
(21) Puri, A.; Jang, H.; Yavlovich, A.; Masood, M. A.; Veenstra, T.D.; Luna, C.; Aranda-Espinoza, H.; Nussinov, R.; Blumenthal, R. Langmuir 2011, 27, 15120. doi: 10.1021/la203453x
(22) Payandeh, J.; Gamal El-Din, T. M.; Scheuer, T.; Zheng, N.; Catterall, W. A. Nature 2012, 486, 135. doi: 10.1038/nature11077
(23) Jönsson, P.; Jonsson, M. P.; Höök, F. Nano Lett. 2010, 10, 1900.doi: 10.1021/nl100779k
(24) Marrink, S. J.; Lindahl, E.; Edholm, O.; Mark, A. E. J. Am.Chem. Soc. 2001, 123, 8638. doi: 10.1021/ja0159618
(25) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952.doi: 10.1002/jcc.540130805
(26) Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Comput.Phys. Commun. 1995, 91, 43. doi: 10.1016/0010-4655(95)00042-E
(27) Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701.doi: 10.1002/jcc.20291
(28) Van der Spoel, D.; Lindahl, E.; Hess, B.; van Buuren, A. R.; Apol, E.; Meulenhoff, P. J.; Berendsen, H. J. Gromacs UserManual, version 4.5; www.gromacs.org.
(29) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. Model. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5
(30) Daura, X.; Mark, A. E.; Van Gunsteren, W. F. J. Comput. Chem. 1998, 19 (5), 535. doi: 10.1002/(SICI)1096-987X(19980415)19:5<535::AID-JCC6>3.0.CO;2-N
(31) Van Gunsteren, W.; Billeter, S.; Eising, A.; Hunenberger, P.; Kruger, P.; Mark, A.; Tironi, I. Biomolecular Simulation: theGromos 96 Manual and User Guide, 1st ed.; HochschulverlagAG an der ETH Zurich: Zurich, Switzerland, 1996.
(32) Bian, F. Y.; Zhang, J.W.; Wang, D.; Xu, S. C. Acta Phys. -Chim.Sin. 2014, 30, 1947. [卞富永, 张继伟, 王丹, 徐四川. 物理化学学报, 2014, 30, 1947.] doi: 10.3866/PKU.WHXB201408271
(33) Zhang, J.W.; Bian, F. Y.; Shi, G. J.; Xu, S. C. Acta Phys. -Chim.Sin. 2014, 30, 183. [张继伟, 卞富永, 施国军, 徐四川. 物理化学学报, 2014, 30, 183.] doi: 10.3866/PKU.WHXB201311281
(34) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem.Theory Comput. 2008, 4, 435. doi: 10.1021/ct700301q
(35) Wang, M.; Xie, W.; Li, A. J.; Xu, S. C. Chirality 2016, 28 (10), 674-685. doi: 10.1002/chir.22630
(36) Xie, W.; Wang, M.; Li, A J.; Xu, S. C. J. Biomol. Struct. Dyn. 2016, doi: 10.1080/07391102.2016.1190947
(37) Xie, W.; Xu, Z. R.; Wang, M.; Xu, S. C. Acta Phys. -Chim. Sin. 2016, 32, 907. [谢炜, 徐泽人, 王明, 徐四川. 物理化学学报, 2016, 32, 907.] doi: 10.3866/PKU.WHXB201601141
(38) Shi, G. J.; Wang, Y.; Jin, Y.; Chi, S. M.; Shi, Q.; Ge, M. F.; Zhang, X. K.; Xu, S. C. J. Biomol. Struct. Dyn. 2012, 30 (5), 559. doi: 10.1080/07391102.2012.687522
(39) Xu, S. C.; Chi, S. M.; Jin, Y.; Shi, Q.; Ge, M. F.; Wang, S.; Zhang, X. K. J. Mole. Model. 2012, 18 (1), 377. doi: 10.1007/s00894-011-1083-7
(40) Chi, S.; Xie, W.; Zhang, J.; Xu, S. C. J. Biomol. Struct. Dyn. 2015, 33 (10), 2234. doi: 10.1080/07391102.2014.999256
(41) Hub, J. S.; de Groot, B. L.; van der Spoel, D. J. Chem. TheoryComput. 2010, 6, 3713. doi: 10.1021/ct100494z
(42) Marrink, S. J.; Berendsen, H. J. C. J. Phys. Chem. 1994, 98, 4155. doi: 10.1021/j100066a040
(43) Marrink, S. J.; Jaehnig, F.; Berendsen, H. J. C. Biophys. J. 1996, 71, 632. doi: 10.1016/S0006-3495(96)79264-0
(44) Zahn, D.; Brickmann, J. Chem. Phys. Lett. 2002, 352, 441.doi: 10.1016/S0009-2614(01)01437-3
(45) Bemporad, D.; Essex, J.W.; Luttmann, C. J. Phys. Chem. B 2004, 108, 4875. doi: 10.1021/jp035260s
(46) Shinoda, W.; Mikami, M.; Baba, T.; Hato, M. J. Phys. Chem. B 2004, 108, 9346. doi: 10.1021/jp035998+
(47) Nichols, J.W.; Deamer, D.W. Proc. Nat. Acad. Sci. U. S. A. 1980, 77, 2038. doi: 10.1073/pnas.77.4.2038919
(48) Benga, G.; Pop, V. I.; Popescu, O.; Borza, V. J. Biochem. Bioph.Meth. 1990, 21, 87. doi: 10.1016/0165-022X(90)90057-J
(49) Jansen, M.; Blume, A. Biophys. J. 1995, 68, 997. doi: 10.1016/S0006-3495(95)80275-4
(50) Andrasko, J.; Forsén, S. Biochem. Biophys. Res. Commun. 1974, 60, 813. doi: 10.1016/0006-291X(74)90313-1
(51) Graziani, Y.; Livne, A. J. Membr. Biol. 1972, 7, 275.doi: 10.1007/BF01867920
(52) Khavrutskii, I. V.; Gorfe, A. A.; Lu, B.; McCammon, J. A. J.Am. Chem. Soc. 2009, 131, 1706. doi: 10.1021/ja8081704
(53) Papahadjopoulos, D.; Nir, S.; Ohki, S. Biochim. Biophys. Acta 1972, 266, 561. doi: 10.1016/0005-2736(72)90354-9920
(54) Boateng, C. A.; Bakare, O. M.; Zhan, J.; Banala, A. K.; Burzynski, C.; Pommier, E.; Keck, T. M.; Donthamsetti, P.Javitch, J. A.; Rais, R.; Slusher, B. S.; Xi, Z. X.; Newman, A. H.J. Med. Chem. 2015, 58, 6195. doi: 10.1021/acs.jmedchem.5b00776
(55) Peelaerts, W.; Bousset, L.; Van der Perren, A.; Moskalyuk, A.; Pulizzi, R.; Giugliano, M.; Van den Haute, C.; Melki, R.; Baekelandt, V. Nature 2005, 522, 340. doi: 10.1038/nature14547
(56) Su, W.; Chen, H. B.; Li, S. H.; Wu, D. Y. Chin. J. Gen. Pract. 2008, 7, 683. [苏闻, 陈海波, 李淑华, 吴冬颖. 中华全科医师杂志, 2008, 7, 683.] doi: 10.3760/cma.j.issn.1671-7368.2008.10.010

[1] 吴选军, 李磊, 彭亮, 王叶彤, 蔡卫权. 嵌入配位不饱和金属位对多孔芳香骨架材料储氢性能的影响[J]. 物理化学学报, 2018, 34(3): 286-295.
[2] 王漪, 贾南方, 齐胜利, 田国峰, 武德珍. 1,8-萘酰亚胺衍生物的合成、表征及电存储性能[J]. 物理化学学报, 2017, 33(11): 2227-2236.
[3] 刘晓龙, 李晓霞, 韩嵩, 乔显杰, 钟北京, 郭力. RP-3高温氧化初始阶段反应机理的ReaxFF MD模拟[J]. 物理化学学报, 2016, 32(6): 1424-1433.
[4] 谢炜, 徐泽人, 王明, 徐四川. 左苯丙胺在多巴胺第三受体分子通道中传输分子动力学模拟[J]. 物理化学学报, 2016, 32(4): 907-920.
[5] 崔大超, 任卫同, 李文飞, 王炜. 腺苷酸激酶催化循环后期Mg2+转移的分子动力学模拟[J]. 物理化学学报, 2016, 32(2): 429-435.
[6] 徐诗文, 林东强, 姚善泾. 布洛芬与人血白蛋白位点II动态结合过程的分子模拟:一种结合途径分析[J]. 物理化学学报, 2016, 32(11): 2811-2818.
[7] 鲁相, 陈循, 汪亚顺, 谭源源, 高木子源. 气体在无定型聚异戊二烯中扩散的分子动力学模拟[J]. 物理化学学报, 2016, 32(10): 2523-2530.
[8] 赵梦尧, 杨雪平, 杨晓宁. 石墨烯狭缝受限孔道中水分子的分子动力学模拟[J]. 物理化学学报, 2015, 31(8): 1489-1498.
[9] 杨硕, 徐桂银, 韩金鹏, 邴欢, 窦辉, 张校刚. 多巴胺改性聚吡咯衍生掺氮多孔碳材料的制备及其超电容性能[J]. 物理化学学报, 2015, 31(4): 685-692.
[10] 吴选军, 赵鹏, 方继敏, 王杰, 刘保顺, 蔡卫权. 新型掺杂多孔芳香骨架材料的储氢性能模拟[J]. 物理化学学报, 2014, 30(11): 2043-2054.
[11] 何文英, 姚小军, 华英杰, 黄国雷, 吴秀丽, 李小宝, 韩长日, 宋小平. 考拉维酸对人血清白蛋白结构的影响[J]. 物理化学学报, 2014, 30(11): 2142-2148.
[12] 卞富永, 张继伟, 王丹, 徐四川. 甲基多巴透过POPC磷脂双层膜过程的分子动力学模拟[J]. 物理化学学报, 2014, 30(10): 1947-1956.
[13] 张继伟, 卞富永, 施国军, 徐四川. 多巴胺在POPC磷脂双层膜中扩散和透过过程的分子动力学模拟[J]. 物理化学学报, 2014, 30(1): 183-193.
[14] 刘媛, 龙梅, 谢孟峡. 白杨素与不同构型人血清白蛋白的作用机制[J]. 物理化学学报, 2013, 29(12): 2647-2654.
[15] 黄永棋, 康雪, 夏斌, 刘志荣. Mpro-C蛋白三维结构域交换的机理: 来自分子模拟的线索[J]. 物理化学学报, 2012, 28(10): 2411-2417.