Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (6): 1253-1260    DOI: 10.3866/PKU.WHXB201702212
论文     
二萘并噻咯的合成及性能
曲红梅1,*(),种泽鹏1,陈旭2,门奕灿1,申海蛟1
1 天津大学化工学院,系统生物工程教育部重点实验室,天津300072
2 天津金新材科技有限公司,天津300384
Synthesis and Properties of a Series of Dinaphthosiloles
Hong-Mei QU1,*(),Ze-Peng CHONG1,Xu CHEN2,Yi-Can MEN1,Hai-Jiao SHEN1
1 Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
2 Tianjin Kingsrial S & T Company, Limited, Tianjin 300384, P. R. China
 全文: PDF(1388 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

合成了一类新的二萘并噻咯类化合物,它们分别是6,6-二甲基-1,2,3,4,8,9,10,11-八丙基二萘并噻咯、6,6-二甲基-1,2,3,4,8,9,10,11-八丁基二萘并噻咯、6,6-二苯基-1,2,3,4,8,9,10,11-八丙基二萘并噻咯和6,6-二苯基-1,2,3,4,8,9,10,11-八丁基二萘并噻咯。合成以炔烃为原料,在二氯二茂锆的诱导作用下生成锆杂环戊二烯,再与卤代苯发生偶联反应得到二碘萘,两分子二碘萘经正丁基锂锂化之后又可以反应生成一分子联萘,最后联萘与硅杂物反应得到不同取代基的二萘并噻咯类化合物。此合成方法不仅收率高,而且工艺简单。之后我们又采用核磁以及质谱对这几个分子进行了表征,采用紫外-可见光谱测试、荧光测试、循环伏安测试、热重分析测试以及高斯计算,对它们的光学性能、电化学性能、稳定性等进行了测试。实验结果表明它们有着相似的光吸收带以及很低的HOMO值(-5.50 eV)。它们的热分解温度都在300℃左右,表明它们有良好的热稳定性。最后,我们用6,6-二甲基-1,2,3,4,8,9,10,11-八丁基二萘并噻咯做为发光层制作了电致发光器件,该器件可以发明亮的蓝紫光。

关键词: 二萘并噻咯偶联反应锂化反应循环伏安热重分析有机电致发光器件    
Abstract:

Siloles constitute an important emerging class of photoluminescent materials. A series of compounds consisting of silole cores and fused naphthalene were synthesized and characterized:6, 6-dimethyl-1, 2, 3, 4, 8, 9, 10, 11-octapropyl-6H-dinaphtho[2, 3-b:2', 3'-d]silole, 1, 2, 3, 4, 8, 9, 10, 11-octabutyl-6, 6-dimethyl-6H-dinaphtho[2, 3-b:2', 3'-d]silole, 6, 6-diphenyl-1, 2, 3, 4, 8, 9, 10, 11-octapropyl-6H-dinaphtho[2, 3-b:2', 3'-d]silole, and 1, 2, 3, 4, 8, 9, 10, 11-octabutyl-6, 6-diphenyl-6H-dinaphtho[2, 3-b:2', 3'-d]silole. These dinaphthalene-fused siloles were synthesized from diiodonaphthalene, which was prepared by a direct coupling method. Subsequent reaction in the presence of n-butyllithium yielded 3, 3'-diiodo-2, 2'-binaphthalene. Direct substitution of two chloride ions from Ph2SiCl2 or Me2SiCl2 with 3, 3'-dilithio-2, 2'-binaphthalene then yielded the multi-substituted silole. Nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry were used to characterize the structures of the siloles. Their optical and electronic properties were investigated using ultraviolet-visible absorption spectroscopy, photoluminescence spectroscopy, cyclic voltammetry, and density functional theory calculations. The dinaphthalene-fused siloles exhibited similar absorption and emission peaks. Their deep highest occupied molecular orbital level at approximately -5.5 eV indicated that they were chemically stable. Differential scanning calorimetry and thermogravimetric analysis indicated that the siloles were stable up to 309℃. A multilayer electroluminescent device was fabricated using 1, 2, 3, 4, 8, 9, 10, 11-octabutyl-6, 6-dimethyl-6H-dinaphtho[2, 3-b:2', 3'-d]silole as a light-emitting layer. The resulting device produced bright blue emission, indicating that these siloles may be suitable materials in organic light-emitting devices.

Key words: Dinaphthosilole    Coupling reaction    Lithiation reaction    Cyclic voltammetry    Thermogravimetric analysis    Organic electroluminescent device
收稿日期: 2016-12-21 出版日期: 2017-02-21
中图分类号:  O649  
基金资助: 国家自然科学基金(21102099)
通讯作者: 曲红梅     E-mail: ququhongmei@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曲红梅
种泽鹏
陈旭
门奕灿
申海蛟

引用本文:

曲红梅,种泽鹏,陈旭,门奕灿,申海蛟. 二萘并噻咯的合成及性能[J]. 物理化学学报, 2017, 33(6): 1253-1260.

Hong-Mei QU,Ze-Peng CHONG,Xu CHEN,Yi-Can MEN,Hai-Jiao SHEN. Synthesis and Properties of a Series of Dinaphthosiloles. Acta Physico-Chimica Sinca, 2017, 33(6): 1253-1260.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201702212        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I6/1253

Fig Scheme 1  Molecular structures of the synthesized dinaphthosiloles
Fig 1  Architecture of the fabricated device
Fig Scheme 2  Synthesis of the diiodonaphthalenes
Fig Scheme 3  Synthesis of the dinaphthosiloles
Fig 2  TGA curves of (a) 4a and 4c and (b) 4b and 4d, recorded at a heating rate of 10 ℃?min-1 under a nitrogen atmosphere
Fig 3  DSC curves of (a) 4a, (b) 4b, (c) 4c, and (d) 4d
Fig 4  UV-Vis absorption spectra of 4a, 4b, 4c, and 4d in CHCl3 solution
Fig 5  PL spectra of 4a, 4b, 4c, and 4d in CHCl3 solution
Compound λabs/nma λabs-onset/nma ΔEopt/eVb λem/nm
4a 239, 299 391 3.17 411
4b 240, 300 392 3.16 410
4c 245, 303 396 3.13 418
4d 244, 304 395 3.14 416
Table 1  Physical parameters of 4a, 4b, 4c, and 4d
Fig 6  CV curves of 4a, 4b, 4c, and 4d
Compound Eonsetox/V Eopt/eV EHOMO/eV ELUMO/eV
4a 1.1959 3.17 -5.50 -2.33
4b 1.1550 3.16 -5.49 -2.33
4c 1.2633 3.13 -5.56 -2.43
4d 1.2412 3.14 -5.54 -2.40
Table 2  Electrochemical data for 4a, 4b, 4c, and 4d
Fig 7  Optimized molecular structures and molecular orbital amplitude plots of the HOMO and LUMO electron distributions for 4a, 4b, 4c, and 4d
Fig 8  Electroluminescence of an OLED device containing 4b
1 Chen H. Y. ; Hou J. ; Hayden A. E. ; Yang H. ; Houk K. N. ; Yang Y. Adv. Mater. 2010, 22 (3), 371.
doi: 10.1002/adma.200902469
2 Chen B. ; Jiang Y. ; Chen L. ; Nie H. ; He B. ; Lu P. ; Sung H. H. Y. ; Williams I. D. ; Kwork H. S. ; Qin A. ; Zhao Z. ; Tang B. Z. Chem.-Eur. J. 2014, 20 (7), 1931.
doi: 10.1002/chem.201303259
3 Shimizu M. ; Mochida K. ; Hiyama T. J.Phys. Chem. C 2011, 115 (22), 11265.
doi: 10.1021/jp201168x
4 Shimizu M. ; Mochida K. ; Katoh M. ; Hiyama T. J.Phys. Chem. C 2010, 114 (21), 10004.
doi: 10.1021/jp103410x
5 Toal S. J. ; Jones K. A. ; Magde D. ; Trogler W. C. J.Am. Chem. Soc. 2005, 127 (33), 11661.
doi: 10.1021/ja052582w
6 Lu G. ; Usta H. ; Risko C. ; Wang L. ; Facchetti A. ; Ratner M. A. ; Marks T. J. J.Am. Chem. Soc. 2008, 130 (24), 7670.
doi: 10.1021/ja800424m
7 Hou J. ; Chen H. Y. ; Zhang S. ; Li G. ; Yang Y. J.Am. Chem. Soc. 2008, 130 (48), 16144.
doi: 10.1021/ja806687u
8 Chu T. Y. ; Lu J. ; Beaupre S. ; Zhang Y. ; Pouliot J. R. ; Wakim S. ; Zhou J. ; Leclerc M. ; Li Z. ; Ding J. ; Tao Y. J.Am. Chem. Soc. 2011, 133 (12), 4250.
doi: 10.1021/ja200314m
9 Chen H. Y. ; Lam W. Y. ; Luo J. D. ; Ho Y. L. ; Tang B. Z. ; Zhu D. B. ; Wong M. ; Kwok H. S. Appl. Phys. Lett. 2002, 81 (4), 574.
doi: 10.1063/1.1495542
10 Tamao K. ; Uchida M. ; Izumizawa T. ; Furukawa K. ; Yamaguchi S. J.Am. Chem. Soc. 1996, 118 (47), 11974.
doi: 10.1021/ja962829c
11 Liu M. S. ; Luo J. ; Jen A. K. Y. Chem. Mater. 2003, 15 (18), 3496.
doi: 10.1021/cm030063r
12 Chen H. ; Yang T. ; Li J. W. ; Zhang X. W. ; Qian Y. ; Xie L. H. ; Huang W. Acta Phys. -Chim. Sin. 2016, 26 (9), 2346.
doi: 10.3866/PKU.WHXB201605163
陈昊; 杨涛; 李杰伟; 张新稳; 钱妍; 解令海黄维. 物理化学学报, 2016, 26 (9), 2346.
doi: 10.3866/PKU.WHXB201605163
13 Wang F. ; Luo J. ; Yang K. X. ; Chen J. W. ; Huang F. ; Cao Y. Macromolecules 2005, 38 (6), 2253.
doi: 10.1021/ma047561I
14 Ren Y. ; Lam J. W. Y. ; Dong Y. Q. ; Tang B. Z. ; Wong K. S. J.Phys. Chem. B 2005, 109 (3), 1135.
doi: 10.1021/jp046659z
15 Qi Q. J. ; Wu X. M. ; Hua Y. L. ; Hou Q. C. ; Dong M. S. ; Mao Z. Y. ; Yin B. ; Yin S. G. Org. Electron. 2010, 11 (3), 503.
doi: 10.1016/j.orgel.2009.11.032
16 Wang M. ; Zhang D. Q. ; Zhang G. X. ; Tang Y. L. ; Wang S. ; Zhu D. B. Anal. Chem. 2008, 80 (16), 6443.
doi: 10.1021/ac801020v
17 Taydakov I. V. ; Akkuzina A. A. ; Avetisov R. I. ; Khomyako A. V. ; Saifutyarov R. R. ; Avetissov I. C. J.Lumin. 2016, 177, 31.
doi: 10.1016/j.jlumin.2016.04.017
18 Du X. B. ; Wang Z. Y. Chem. Commun. 2011, 47, 4276.
doi: 10.1039/C1CC00066G
19 Yin S. C. ; Zhang J. ; Feng H. K. ; Zhao Z. J. ; Xu L. W. ; Qiu H. Y. ; Tang B. Z. Dyes Pigm. 2012, 95 (2), 174.
doi: 10.1016/j.dyepig.2012.04.007
20 Zhang Q. W. ; An K. ; He W. Angew. Chem. 2014, 126 (22), 5773.
doi: 10.1002/ange.201400828
21 Murai M. ; Matsumoto K. ; Takeuchi Y. ; Takai K. Org. Lett. 2015, 17 (12), 3102.
doi: 10.1021/acs.orglett.5b01373
22 Ohshita J. ; Lee K. H. ; Kimura K. ; Kunai A. Organometallics 2004, 23 (23), 5622.
doi: 10.1021/om049656h
23 Ohshita J. ; Kai H. ; Sumida T. ; Kunai A. ; Adachi A. ; Sakamaki K. ; Okita K. J.Organomet. Chem. 2002, 642 (1-2), 137.
doi: 10.1016/S0022-328X(01)01257-8
24 Kunai A. ; Ohshita J. ; Iida T. ; Kanehara K. ; Adachi A. ; Okita K. Synth. Met. 2003, 137 (1-3), 1007.
doi: 10.1016/S0379-6779(02)00854-8
25 Song X. N. ; Wang G. W. ; Chang Y. ; Ma Y. ; Wang C. K. Acta Phys. -Chim. Sin. 2016, 32 (4), 943.
doi: 10.3866/PKU.WHXB201601291
宋秀能; 王广伟; 常燕; 马勇; 王传奎. 物理化学学报, 2016, 32 (4), 943.
doi: 10.3866/PKU.WHXB201601291
26 Liang Y. ; Geng W. Z. ; Wei J. N. ; Xi Z. F. Angew. Chem.-Ger. Edit. 2012, 124 (8), 1970.
doi: 10.1002/ange.201108154
27 Volz H. ; Kowarsch H. J.Organomet. Chem. 1977, 136 (2), c27.
doi: 10.1016/S0022-328X(00)82128-2
28 Zhao J. C. ; Qiu D. F. ; Shi J. W. ; Wang H. J.Org. Chem. 2012, 77 (6), 2929.
doi: 10.1021/jo202111z
29 Yasuike S. ; Hagiwara J. ; Danjo H. ; Kawahata M. ; Kakusawa N. ; Yamaguchi K. ; Kurita J. Heterocycles 2009, 78 (12), 3001.
doi: 10.3987/COM-09-11812
30 Bayrak R. ; Ak?ay H. T. ; Durmu? M. ; De?irmencio?lu ?. J.Organomet. Chem. 2011, 696 (23), 3807.
doi: 10.1016/j.jorganchem.2011.09.002
31 Zhao Z. J. ; Liu D. D. ; Mahtab F. ; Xin L. Y. ; Shen Z. F. ; Yu Y. ; Chan C. Y. K. ; Lu P. ; Lam J. W. Y. ; Sung H. H. Y. ; Williams I. D. ; Yang B. ; Ma Y. G. ; Tang B. Z. Chem.-Eur. J. 2011, 17 (21), 5998.
doi: 10.1002/chem.201003382
32 Yamaguchi S. ; Jin R. Z. ; Tamao K. J.Organomet. Chem. 1998, 559 (1-2), 73.
doi: 10.1016/S0022-328X(98)00425-2
33 Siddiqui S. A. ; Al-Hajry A. ; Al-Assiri M. S. Int. J.Quantum Chem. 2016, 116 (5), 339.
doi: 10.1002/qua.25034
34 Foresman J. B. ; Head-Gordon M. ; Pople J. A. ; Frisch M. J. J.Phys. Chem. 1992, 96 (1), 135.
doi: 10.1021/j100180a030
[1] 易颜辉,王旬旬,王丽,闫金辉,张家良,郭洪臣. 等离子体引发CH3OH/NH3偶联反应合成腈类化合物[J]. 物理化学学报, 2018, 34(3): 247-255.
[2] 佟静,屈晔,井立强,刘璐,刘春辉. 用恒温热重法测定1-己基-3-甲基咪唑苏氨酸离子液体[C6mim][Thr]蒸汽压和蒸发焓[J]. 物理化学学报, 2018, 34(2): 194-200.
[3] 吴小英, 杨丽坤, 闫慧, 杨防祖, 田中群, 周绍民. n型半导体硅电极表面Au的电化学成核机理[J]. 物理化学学报, 2015, 31(9): 1708-1714.
[4] 李菀丽, 刘晓云, 苗艳勤, 杨君礼, 武聪伶, 李源浩, 郭鹍鹏, 王华, 许并社. MgF2改性Alq3纳米复合材料的制备及其对OLED抗老化性能的提高[J]. 物理化学学报, 2015, 31(9): 1780-1786.
[5] 钟耀贤, 卞梦颖, 张明骁, 褚赛赛, 陈志坚, 龚旗煌, 肖立新. 介观光学结构提高蓝色顶发射有机电致发光器件效率[J]. 物理化学学报, 2015, 31(8): 1597-1601.
[6] 苗艳勤, 高志翔, 武钰铃, 杜晓刚, 李源浩, 刘慧慧, 贾虎生, 王华, 刘旭光. 抗菌医药左氧氟沙星在有机电致发光二极管中的应用[J]. 物理化学学报, 2015, 31(3): 552-558.
[7] 韦传东, 葛国平, 李春艳, 雷克微, 梁洪泽, 禹钢, 刘志伟. 一种吡嗪铱(Ⅲ)配合物的晶体结构及光物理性质[J]. 物理化学学报, 2015, 31(1): 17-22.
[8] 彭中, 阎文艺, 王少娜, 郑诗礼, 杜浩, 张懿. NaOH溶液中碱浓度、氧气压力以及温度对Pt电极上氧气还原反应的影响[J]. 物理化学学报, 2014, 30(1): 67-74.
[9] 史纪鹏, 杨防祖, 田中群, 周绍民. 铜电极表面铜锡合金电结晶机理[J]. 物理化学学报, 2013, 29(12): 2579-2584.
[10] 王昉, 盛沈俊, 郭各朴, 马青玉. 微孔聚乳酸支架材料的热稳定性与动态热机械特性[J]. 物理化学学报, 2013, 29(12): 2505-2512.
[11] 宋晗, 王娜娜, 李悦, 阮文娟. 含末端炔基的Salen型金属配合物的合成、表征及性质[J]. 物理化学学报, 2013, 29(11): 2300-2307.
[12] 吴京珂, 沈兴海, 陈庆德. CMPO-离子液体萃取分离铀(VI)体系的电化学性质[J]. 物理化学学报, 2013, 29(08): 1705-1711.
[13] 徐颖华, 马红星, 蔡倩倩, 朱英红, 马淳安. 乙腈溶剂中三氯化苄在银阴极上的脱氯反应[J]. 物理化学学报, 2013, 29(05): 973-980.
[14] 刘北平, 谭志诚. Nd(Gly)2Cl3·3H2O和Pr(Ala)3Cl3·3H2O的热力学性质[J]. 物理化学学报, 2013, 29(01): 17-22.
[15] 张超, 敖建平, 王利, 姜韬, 孙国忠, 何青, 周志强, 孙云. Ga和Cu/In衬底上电沉积金属Ga[J]. 物理化学学报, 2012, 28(08): 1913-1922.