Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (6): 1140-1148    DOI: 10.3866/PKU.WHXB201702242
论文     
混合溶剂对β-HMX结晶形貌影响的分子动力学模拟
CHENFang1,*(),LIUYuan-Yuan1,WANGJian-Long1,SuNing-Ning2,LILi-Jie3,CHENHong-Chun1
1 中北大学理学院,太原030051
2 中北大学理学院,太原030051
3 北京理工大学材料学院,北京100081
Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations
1 School of Science, North University of China, Taiyuan 030051, P. R. China
2 School of Science, North University of China, Taiyuan 030051, P. R. China
3 School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
 全文: PDF(1820 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

为了解释混合溶剂对β-HMX结晶形貌的影响,采用分子动力学方法系统地研究了β-HMX晶体表面与混合溶剂(丙酮/γ-丁内酯和二甲基甲酰胺/水)的相互作用,体积比从1:3到3:1。使用修正的附着能模型预测了β-HMX在混合溶剂中的生长习性。结果表明:β-HMX晶体的(020)面与溶剂分子的相互作用最弱,混合溶剂对β-HMX不同晶面的作用变化,可以显著的改变β-HMX的晶体形态。通过比较β-HMX在不同体积比混合溶剂作用下结晶形貌的纵横比,发现混合溶剂为二甲基甲酰胺/水,其体积比为1:3时,有利于β-HMX晶体球形化。

关键词: β-HMX晶体形貌混合溶剂分子动力学模拟附着能    
Abstract:

In an attempt to explain the co-solvent effect on the shape of β-HMX crystals, molecular dynamics simulations were applied to systematically investigate the interactions of β-HMX crystal faces and the co-solvents (acetone/γ-butyrolactone, dimethylformamide/H2O) by varying the volume ratio from 1:3 to 3:1. The growth habit of β-HMX in co-solvent was predicted using the modified attachment energy model. The results indicated that the (020) face of the β-HMX crystal has the weakest interaction with solvent molecule, and the binary solvent effects on different crystal faces varied such that the crystal morphology was affected significantly. The comparison of the β-HMX crystal aspect ratios grown from co-solvents with different volume ratios revealed that dimethylformamide/H2O with volume ratio of 1:3 favors the spheroidization of β-HMX.

Key words: β-HMX    Crystal morphology    Co-solvent    Molecular dynamics simulations    Attachment energy
收稿日期: 2016-11-28 出版日期: 2017-02-24
中图分类号:  O641  
基金资助: 国家自然科学基金(11447219);国家自然科学基金(11547264)
通讯作者: CHENFang     E-mail: f_chen@nuc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
CHENFang
LIUYuan-Yuan
WANGJian-Long
SuNing-Ning
LILi-Jie
CHENHong-Chun

引用本文:

CHENFang,LIUYuan-Yuan,WANGJian-Long,SuNing-Ning,LILi-Jie,CHENHong-Chun. 混合溶剂对β-HMX结晶形貌影响的分子动力学模拟[J]. 物理化学学报, 2017, 33(6): 1140-1148.

链接本文:

http://www.whxb.pku.edu.cn/CN/Y2017/V33/I6/1140

Fig 1  Molecular (left) and crystal (right) structures of β-HMX gray, carbon; blue, nitrogen; red, oxygen; white, hydrogen. color online
Fig 2  Schematic diagram of β-HMX-mixed solvents interface model
Fig 3  Plot of energies and temperature vs simulation time for β-HMX (020) surface-acetone/γ-butyrolactone (volume ratio of 1 : 1) solvent interface at 298 K
Fig 4  Crystal morphology of β-HMX in vacuum calculated by the AE model
(hkl) Eatt/(kJ·mol-1) Total facet area/% Rhkl
(011) -78.66 46.89 1
(111) -91.25 34.87 1.16
(020) -91.46 10.65 1.16
(102) -100.50 4.42 1.28
(100) -119.53 3.17 1.52
Table 1  Habit parameters of β-HMX crystal in vacuum calculated by the AE model
Volume ratio (hkl) (011) (111) (020) (100) (102)
Eatt -78.66 -91.25 -91.46 -119.53 -100.50
Rhkl 1 1.16 1.16 1.52 1.28
Aacc 1.08 1.17 0.59 1.52 1.33
Abox 7.85 8.57 4.39 9.09 10.51
1:3 Eint -456.32 -536.69 -264.28 -424.98 -638.22
Eatts -15.76 -17.90 -55.78 -48.69 -19.70
R'hkl 1 1.14 3.54 3.09 1.25
1:2 Eint -445.88 -515.81 -267.17 -674.14 -630.23
Eatts -17.20 -20.75 -55.39 -7.16 -20.71
R'hkl 1 1.21 3.22 0.42 1.20
1 : 1 Eint -439.30 -473.65 -261.46 -426.84 -577.15
Eatts -18.10 -26.52 -56.16 -48.38 -27.43
R'hkl 1 1.47 3.10 2.67 1.52
2 : 1 Eint -453.63 -442.71 -239.31 -548.84 -575.46
Eatts -16.13 -30.74 -59.15 -28.05 -27.64
R'hkl 1 1.91 3.67 1.74 1.71
3 : 1 Eint -332.77 -438.11 -229.70 -649.91 -594.35
Eatts -32.79 -31.37 -60.45 -11.20 -25.25
R'hkl 1 0.96 1.84 0.34 0.77
Table 2  Calculated attachment energies for dominant crystal habit faces together with modified attachment energy and relative growth rates of faces under a variety of acetone/γ-butyrolactone ratios
Volume ratio (hkl) Total facet area/% Aspect ratio
1:3 (011) 55.79 1.93
(111) 40.01
(102) 4.20
(011) 36.51 4.41
(111) 6.38
(100) 50.79
1:2 (102) 6.32
1:1 (011) 65.59 2.24
(111) 31.10
(102) 3.31
2:1 (011) 70.36 2.23
(111) 15.94
(100) 8.44
(102) 5.26
3:1 (011) 17.92 5.28
(111) 14.37
(100) 51.39
(102) 16.32
Table 3  Crystal morphology for different crystal habits of β-HMX in co-solvents of acetone/γ-butyrolactone
Fig 5  Crystal morphology of β-HMX in co-solvent of acetone/γ-butyrolactone with volume ratios of 1 : 3 to 3 : 1 predicted by the modified AE model
Fig 6  Comparison of the predicted β-HMX crystal morphology and the corresponding experiment shape grown from 1 : 1 molar acetone/γ-butyrolactone mixture (a): the experimental shape by the cooling crystallization10 (Copyright (2004) American Chemical Society); (b) the predicted β-HMX crystal morphology by the MAE model with volume ratios of 1 : 1
Volume ratio (011) (111) (020) (100) (102)
Eatt -78.66 -91.25 -91.46 -119.53 -100.50
Rhkl 1 1.16 1.16 1.52 1.28
Aacc 1.08 1.17 0.59 1.52 1.33
Abox 7.85 8.57 4.39 9.09 10.51
1:3 Eint -293.67 -343.55 -209.87 -380.03 -424.13
Eatts -38.18 -44.30 -63.13 -56.19 -46.80
R'hkl 1 1.16 1.65 1.47 1.23
1:2 Eint -336.78 -337.29 -160.87 -436.17 -451.79
Eatts -32.24 -45.15 -69.74 -46.83 -43.30
R'hkl 1 1.40 2.16 1.45 1.34
1 : 1 Eint -425.64 -416.07 -261.97 -599.92 -517.25
Eatts -19.99 -4.39 -56.10 -19.53 -35.01
R'hkl 1 1.72 2.81 0.98 1.75
2 : 1 Eint -461.65 -450.96 -259.73 -377.43 -601.77
Eatts -15.03 -29.62 -56.40 -56.62 -24.31
R'hkl 1 1.97 3.75 3.77 1.62
3 : 1 Eint -469.79 -530.81 -266.18 -659.93 -621.17
Eatts -13.90 -18.70 -55.53 -9.53 -21.86
R'hkl 1 1.35 3.99 0.69 1.57
Table 4  Calculated attachment energies for dominant crystal habit faces together with modified attachment energy and relative growth rates of faces under a variety of DMF/H2O ratios
Volume ratio (hkl) Total facet percentage areas/% Aspect ratio
(011) 53.33 1.70
(111) 36.42
(020) 1.31
(100) 3.68
(102) 5.26
(011) 60.63 1.89
(111) 26.13
(100) 7.13
(102) 6.11
(011) 62.46 2.08
(111) 6.67
(100) 28.26
(102) 2.61
(011) 72.68 2.76
(111) 19.69
(102) 7.63
(011) 51.25 2.73
(111) 12.43
(100) 34.51
(102) 1.81
Table 5  Crystal morphology for different crystal habits of β-HMX in co-solvents of DMF/H2O
Fig 7  Crystal morphology of β-HMX in co-solvent of DMF/H2O with volume ratios of 1 : 3 to 3 : 1 predicted by the modified AE model
1 Lee B. M. ; Kim S. J. ; Lee B. C. ; Kim H. S. ; Kim H. ; Lee Y. W. Ind. Eng. Chem. Res. 2011, 50 (15), 9107.
doi: 10.1021/ie102593p
2 Zhou T. T. ; Shi Y. D. ; Huang F. L. Acta Phys. -Chim. Sin. 2012, 28 (11), 2605.
doi: 10.3866/PKU.WHXB201208031
周婷婷; 石一丁; 黄风雷. 物理化学学报, 2012, 28 (11), 2605.
doi: 10.3866/PKU.WHXB201208031
3 Jiang F. L. ; Zhai G. H. ; Ding L. ; Yue K. F. ; Liu N. ; Shi Q. Z. ; Wen Z. Y. Acta Phys. -Chim. Sin. 2010, 26 (2), 409.
doi: 10.3866/PKU.WHXB20100128
姜富灵; 翟高红; 丁黎; 岳可芬; 刘妮; 史启祯; 文振翼. 物理化学学报, 2010, 26 (2), 409.
doi: 10.3866/PKU.WHXB20100128
4 Wang L. X. ; Liu Y. ; Tuo X. L. ; Li S. N. ; Wang X. G. Acta Phys. -Chim. Sin. 2007, 23 (10), 1560.
doi: 10.3866/PKU.WHXB20071013
王罗新; 刘勇; 庹新林; 李松年; 王晓工. 物理化学学报, 2007, 23 (10), 1560.
doi: 10.3866/PKU.WHXB20071013
5 Shi W. Y. ; Chu Y. T. ; Xia M. Z. ; Lei W. ; Wang F. Y. J.Mol. Graphics Model. 2016, 64, 94.
doi: 10.1016/j.jmgm.2016.01.004
6 Liu N. ; Li Y. N. ; Zeman S. ; Shu Y. J. ; Wang B. Z. ; Zhou Y. S. ; Zhao Q. L. ; Wang W. L. CrystEngComm. 2016, 18 (16), 2843.
doi: 10.1039/c6ce00049e
7 Yan T. ; Wang J. H. ; Liu Y. C. ; Zhao J. ; Yuan J. M. ; Guo J.H. J. Cryst. Growth. 2015, 430, 7.
doi: 10.1016/j.jcrysgro.2015.07.031
8 Kim D. Y. ; Kim K. J.Chem. Eng. Res. Des. 2010, 88 (11A), 1461.
doi: 10.1016/j.cherd.2009.08.012
9 Kim C. K. ; Lee B. C. ; Lee Y. W. ; Kim H. S. Korean J.Chem. Eng. 2009, 26 (4), 1125.
doi: 10.2478/s11814-009-0187-6
10 Antoine E. D. M. ; van der H. ; Richard H. B. B. Cryst. Growth & Des. 2004, 4 (5), 999.
doi: 10.1021/cg049965a
11 Hod I. ; Mastai Y. ; Medina D. D. CrystEngComm. 2011, 13 (2), 502.
doi: 10.1039/c0ce00133c
12 Lee H. E. ; Lee T. B. ; Kim H. S. ; Koo K. K. Cryst. Growth Des. 2010, 10 (2), 618.
doi: 10.1021/cg901023s
13 Zhang L. ; Yue L. H. ; Wang F. ; Wang Q. J.Phys. Chem. B 2008, 112 (34), 10668.
doi: 10.1021/jp8034659
14 Chen G. ; Chen C. Y. ; Xia M. Z. ; Lei W. ; Wang F. Y. ; Gong X. D. RSC Adv. 2015, 5 (32), 25581.
doi: 10.1039/c4ra07544g
15 Shi W. Y. ; Xia M. Z. ; Lei W. ; Wang F. Y. J.Mol. Graphics Model. 2014, 50, 71.
doi: 10.1016/j.jmgm.2014.03.005
16 Shen F. F. ; Lv P. H. ; Sun C. H. ; Zhang R. B. ; Pang S. P. Molecules. 2014, 19 (11), 18574.
doi: 10.3390/molecules191118574
17 Chen G. ; Xia M. Z. ; Lei W. ; Wang F. Y. ; Gong X. D. J.Phys. Chem. A 2014, 118 (49), 11471.
doi: 10.1021/jp508731q
18 Zhang C. Y. ; Ji C. L. ; Li H. Z. ; Zhou Y. ; Xu J. J. ; Xu R. J. ; Li J. ; Luo Y. J.Cryst. Growth Des. 2013, 13 (1), 282.
doi: 10.1021/cg301421e
19 Duan X. H. ; Wei C. X. ; Liu Y. G. ; Pei C. H. J.Hazard. Mater. 2010, 174 (1-3), 175.
doi: 10.1016/j.jhazmat.2009.09.033
20 Svensson L. ; Nyqvist J. O. ; Westling L. J.Hazard. Mater. 1986, 13 (1), 103.
doi: 10.1016/0304-3894(86)80011-5
21 Hartman P. ; Bennema P. J.Cryst. Growth. 1980, 49 (1), 145.
doi: 10.1016/0022-0248(80)90075-5
22 Berkovitch-Yellin Z. J.Am. Chem. Soc. 1985, 107 (26), 8239.
doi: 10.1021/ja00312a070
23 Sun H. J.Phys. Chem. B 1998, 102, 38.
doi: 10.1021/jp980939v
24 Song X. L. ; Wang Y. ; An C. W. ; Guo X. D. ; Li F. S. J.Hazard. Mater. 2008, 159 (2-3), 222.
doi: 10.1016/j.jhazmat.2008.02.009
25 Liu, F.; Wu, X. Q.; Ai, G.; Wang, Z. Q.; Li, W. Initiators & Pyrotechnics 2011, No. 6, 30.
[1] 刘夫锋,范玉波,刘珍,白姝. ZAβ3和Aβ16-40亲和作用的分子机理解析[J]. 物理化学学报, 2017, 33(9): 1905-1914.
[2] 王子民,郑默,谢勇冰,李晓霞,曾鸣,曹宏斌,郭力. 基于ReaxFF力场的对硝基苯酚臭氧氧化分子动力学模拟[J]. 物理化学学报, 2017, 33(7): 1399-1410.
[3] 曹了然,张春煜,张鼎林,楚慧郢,张跃斌,李国辉. 分子动力学模拟技术在生物分子研究中的进展[J]. 物理化学学报, 2017, 33(7): 1354-1365.
[4] 陈贻建, 周洪涛, 葛际江, 徐桂英. 双链阴离子表面活性剂1-烷基-癸基磺酸钠在气/液界面聚集行为:分子动力学模拟研究[J]. 物理化学学报, 2017, 33(6): 1214-1222.
[5] 杨利,张国英,刘影,张同来. 高氯酸碳酰肼过渡金属配合物晶体形态的理论和实验研究[J]. 物理化学学报, 2017, 33(12): 2463-2471.
[6] 刘青康,宋文平,黄其涛,张广玉,侯珍秀. 热辅助存储磁盘硅掺杂非晶碳薄膜氧化的ReaxFF反应力场分子动力学模拟[J]. 物理化学学报, 2017, 33(12): 2472-2479.
[7] 孙怡然,于飞,马杰. 纳米受限水的研究进展[J]. 物理化学学报, 2017, 33(11): 2173-2183.
[8] 张陶娜,徐雪雯,董亮,谭昭怡,刘春立. 分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J]. 物理化学学报, 2017, 33(10): 2013-2021.
[9] 伍绍贵, 冯丹. 碱基对在DNA双螺旋链上分离的自由能计算[J]. 物理化学学报, 2016, 32(5): 1282-1288.
[10] 刘子瑜, 廖琦, 靳志强, 张磊, 张路. 分子动力学模拟电解质对阴非离子表面活性剂界面行为的影响[J]. 物理化学学报, 2016, 32(5): 1168-1174.
[11] 谢炜, 徐泽人, 王明, 徐四川. 左苯丙胺在多巴胺第三受体分子通道中传输分子动力学模拟[J]. 物理化学学报, 2016, 32(4): 907-920.
[12] 李清, 杨登峰, 王建花, 武琪, 刘清芝. 直径大于2nm的(15,15)碳纳米管的仿生生物改性及其脱盐行为的分子模拟[J]. 物理化学学报, 2016, 32(3): 691-700.
[13] 孟现美, 张少龙, 张庆刚. 分子动力学模拟别构抑制剂Efavirenz对HIV-1逆转录酶的作用[J]. 物理化学学报, 2016, 32(2): 436-444.
[14] 赫兰兰, 郭宇, 赵健, 姜新蕊, 杨忠志, 赵东霞. 应用ABEEMσπ极化力场对Zn2+水溶液配位微结构和水交换反应进行分子动力学模拟研究[J]. 物理化学学报, 2016, 32(12): 2921-2931.
[15] 沈洪辰, 丁吉勇, 李丽, 刘夫锋. Y220C突变体影响p53C蛋白质构象转换的分子动力学模拟[J]. 物理化学学报, 2016, 32(10): 2620-2627.