Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (5): 1065-1070    DOI: 10.3866/PKU.WHXB201703061
研究论文     
基于时间分辨方法的LicT蛋白荧光动力学特性
常孟方1, 李磊1, 曹潇丹1, 贾梦辉2, 周加胜1, 陈缙泉1, 徐建华1
1 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062;
2 中国科学院上海光学精密机械研究所, 上海 201800
Fluorescence Dynamics of LicT Protein by Time-Resolved Spectroscopy
CHANG Meng-Fang1, LI Lei1, CAO Xiao-Dan1, JIA Meng-Hui2, ZHOU Jia-Sheng1, CHEN Jin-Quan1, XU Jian-Hua1
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China;
2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
 全文: PDF(940 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

使用时间分辨荧光方法,结合紫外吸收光谱和稳态荧光光谱技术,测量了LicT 蛋白中色氨酸残基的荧光动力学特性,进而对LicT 蛋白质激活前后的局部微环境和结构变化进行了研究。LicT 蛋白质的激活态使得有关糖类利用的基因转录过程继续进行,促进机体新陈代谢。通过色氨酸残基的荧光发射和寿命的差异判断出激活型蛋白AC 141 和野生型蛋白Q 22 不同的结构性质和微环境差异。在此基础上,通过衰减相关光谱(DAS)和时间分辨发射光谱(TRES)阐释了两种蛋白色氨酸残基和溶剂的相互作用,说明了激活型AC 141 的比野生型Q 22的结构更加紧密。此外,TRES还说明了蛋白中的色氨酸残基存在连续光谱弛豫过程。各向异性结果则对残基和整个蛋白的构象运动进行了阐述,说明了色氨酸残基在蛋白质体系内有独立的局部运动,且在激活型蛋白中该运动更加强烈。

关键词: 时间相关单光子计数色氨酸衰减相关光谱时间分辨发射光谱各向异性    
Abstract:

In this paper, the fluorescence dynamics of tryptophan residues in LicT protein is investigated by time-resolved fluorescence method combined with UV absorption and steady-state fluorescence spectroscopy. The local microenvironment and structural changes of LicT protein before and after activation are studied. The activated LicT protein AC 141 prevents the antitermination of gene transcription involved in carbohydrate utilization to accelerate the body's metabolism. The structural properties and microenvironment of activated protein AC 141 and wild-type protein Q 22 were determined by different fluorescence emissions and lifetimes of tryptophan residues. The interaction between tryptophan residues and solvent is elucidated by decay associated spectroscopy (DAS) and time-resolved emission spectra (TRES), indicating that upon activation, the structure of AC 141 is more compact than that of wild-type Q 22. In addition, TRES also showed that tryptophan residues in the protein had a continuous spectral relaxation process. Anisotropy results illustrated the conformational motions of residues and whole proteins, suggesting that tryptophan residues had independent local motions in the protein system, and that the motions were more intense in the activated protein.

Key words: Time-correlated single-photon counting    Tryptophan    Decay-associated spectra    Timeresolved emission spectra    Anisotropy
收稿日期: 2017-01-05 出版日期: 2017-03-06
中图分类号:  O643  
通讯作者: 徐建华     E-mail: jhxu@ecnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
常孟方
李磊
曹潇丹
贾梦辉
周加胜
陈缙泉
徐建华

引用本文:

常孟方, 李磊, 曹潇丹, 贾梦辉, 周加胜, 陈缙泉, 徐建华. 基于时间分辨方法的LicT蛋白荧光动力学特性[J]. 物理化学学报, 2017, 33(5): 1065-1070.

CHANG Meng-Fang, LI Lei, CAO Xiao-Dan, JIA Meng-Hui, ZHOU Jia-Sheng, CHEN Jin-Quan, XU Jian-Hua. Fluorescence Dynamics of LicT Protein by Time-Resolved Spectroscopy. Acta Phys. -Chim. Sin., 2017, 33(5): 1065-1070.

链接本文:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/10.3866/PKU.WHXB201703061        http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/Y2017/V33/I5/1065

(1) Frauenfelder, H.; Sligar, S. G.; Wolynes, P. G. Science 1991, 254 (5038), 1598. doi: 10.1126/science.1749933
(2) Xu, J.; Toptygin, D.; Graver, K. J.; Albertini, R. A.; Savtchenko, R. S.; Meadow, N. D.; Roseman, S.; Callis, P. R.; Brand, L.; Knutson, J. R. J. Am. Chem. Soc. 2006, 128 (4), 1214.doi: 10.1021/ja055746h
(3) Schimmel, P.; Cantor, C. Biophysical Chemistry: Part Ⅱ;Techniques for the Study of Biological Structure and Function;WH Freeman: New York, 1980; pp 14-178.
(4) Lu, W.; Kim, J.; Qiu, W.; Zhong, D. Chem. Phys. Lett. 2004, 388 (1-3), 120. doi: 10.1016/j.cplett.2004.03.012
(5) Callis, P. R. Method Enzymol. 1996, 278, 113. doi: 10.1016/S0076-6879(97)78009-1
(6) Longworth, J.W. Intrinsic Fluorescence of Proteins. In Time-Resolved Fluorescence Spectroscopy in Biochemistry andBiology; Cundall, R. B., Dale, R. E. Eds.; Springer US: Boston, MA, 1983; pp 651-725.
(7) Knutson, J. R.; Walbridge, D. G.; Brand, L. Biochemistry 1982, 21 (19), 4671. doi: 10.1021/bi00262a024
(8) McMahon, L. P.; Yu, H. T.; Vela, M. A.; Morales, G. A.; Shui, L.; Fronczek, F. R.; McLaughlin, M. L.; Barkley, M. D. J. Phys.Chem. B 1997, 101 (16), 3269. doi: 10.1021/jp963273i
(9) Ross, J. B. A.; Wyssbrod, H. R.; Porter, R. A.; Schwartz, G. P.; Michaels, C. A.; Laws, W. R. Biochemistry 1992, 31 (6), 1585.doi: 10.1021/bi00121a002
(10) Szabo, A. G.; Rayner, D. M. J. Am. Chem. Soc. 1980, 102 (2), 554563. doi: 10.1021/ja00522a020
(11) Chen, Y.; Barkley, M. D. Biochemistry 1998, 37 (28), 9976.doi: 10.1021/bi980274n
(12) Lakowicz, J. R. Principles of Fluorescence Spectroscopy;Springer Science & Business Media: New York, 2006; pp 102-605.
(13) Vincent, M.; Deveer, A. M.; Haas, G. H.; Verheij, H. M.; Gallay, J. Eur. J. Biochem. 1993, 215 (3), 531. doi: 10.1111/j.1432-1033.1993.tb18062.x
(14) Ross, J. B. A.; Schmidt, C. J.; Brand, L. Biochemistry 1981, 20 (15), 4369. doi: 10.1021/bi00518a021
(15) Deutscher, J.; Francke, C.; Postma, P.W. Microbiol. Mol. Biol.R. 2006, 70 (4), 939. doi: 10.1128/MMBR.00024-06
(16) Stülke, J.; Arnaud, M.; Rapoport, G.; Martin-Verstraete, I. Mol.Microbiol. 1998, 28 (5), 865. doi: 10.1046/j.1365-2958.1998.00839.x
(17) van Tilbeurgh, H.; Le Coq, D.; Declerck, N. EMBO J. 2001, 20 (14), 3789. doi: 10.1093/emboj/20.14.3789
(18) Declerck, N.; Dutartre, H.; Receveur, V.; Dubois, V.; Royer, C.; Aymerich, S.; van Tilbeurgh, H. J. Mol. Biol. 2001, 314, 671.doi: 10.1006/jmbi.2001.5185
(19) Declerck, N.; Vincent, F.; Hoh, F.; Aymerich, S.; van Tilbeurgh, H. J. Mol. Biol. 1999, 294 (2), 389. doi: 10.1006/jmbi.1999.3256
(20) Gooch, J.W. Beer-Bouguer Law (Beer-Lambert Law). InEncyclopedic Dictionary of Polymers, Gooch, J.W. Ed.; Springer New York: New York, 2011; p 72.
(21) Zhang, L.; Kao, Y. T.; Qiu, W.; Wang, L.; Zhong, D. J. Phys.Chem. B 2006, 110 (37), 18097. doi: 10.1021/jp063025e
(22) Callis, P. R.; Burgess, B. K. J. Phys. Chem. B 1997, 101 (46), 9429. doi: 10.1021/jp972436f
(23) Pierce, D.W.; Boxer, S. G. Biophys. J. 1995, 68 (4), 1583.doi: 10.1016/S0006-3495(95)80331-0
(24) Qiu, W.; Li, T.; Zhang, L.; Yang, Y.; Kao, Y. T.; Wang, L.; Zhong, D. Chem. Phys. 2008, 350 (1-3), 154. doi: 10.1016/j.chemphys.2008.01.061
(25) Gryczynski, I.; Wiczk, W.; Johnson, M. L.; Lakowicz, J. R.Biophys. Chem. 1988, 32 (2), 173. doi: 10.1016/0301-4622(88)87005-4
(26) Chen, R. F.; Knutson, J. R.; Ziffer, H.; Porter, D. Biochemistry 1991, 30 (21), 5184. doi: 10.1021/bi00235a011

[1] 周婷婷, 宋华杰, 黄风雷. 冲击载荷下TATB晶体滑移和各向异性的分子动力学研究[J]. 物理化学学报, 2017, 33(5): 949-959.
[2] 陆阳. TiO2光催化剂的晶面效应研究进展[J]. 物理化学学报, 2016, 32(9): 2185-2196.
[3] 王经东, 李爽, 吕荣, 于安池. 酪氨酸猝灭Eosin Y的荧光[J]. 物理化学学报, 2015, 31(9): 1787-1794.
[4] 唐睿智, 李海霞, 刘艳成, 张鹏, 曹西艳, 王文锋. 维生素K3的激发三重态与色氨酸、酪氨酸电子转移氧化反应的激光闪光光解研究[J]. 物理化学学报, 2012, 28(01): 213-216.
[5] 蒲鹏, 徐灿, 解淑玉. 尺寸效应对SiO2纳米管化学屏蔽张量的影响[J]. 物理化学学报, 2011, 27(09): 2227-2232.
[6] 程祥龙;吴爱华;沈兴海;何永克. POPOP诱导环糊精形成纳米管的研究[J]. 物理化学学报, 2006, 22(12): 1466-1472.
[7] 王海龙;王秀喜;王宇;梁海弋 . 金属Cu低指数表面熔化行为的分子动力学模[J]. 物理化学学报, 2006, 22(11): 1367-1371.
[8] 李永庆;李健;宋朋;马凤才. 1Π态双原子分子中关于Λ量子干涉的微分干涉角[J]. 物理化学学报, 2006, 22(05): 602-607.
[9] 李华;徐彩玲;赵光宇;力虎林. 非晶Co-Pt合金纳米线有序阵列的制备及其磁学性质[J]. 物理化学学报, 2005, 21(06): 641-645.
[10] 齐航, 朱涛, 刘忠范. 电解法制备棒状金纳米粒子溶胶[J]. 物理化学学报, 2000, 16(10): 956-960.
[11] 姜继森, 高濂, 杨燮龙, 郭景坤. α-Fe2O3纳米微粒的制备及其Mössbuer谱研究[J]. 物理化学学报, 2000, 16(04): 312-316.
[12] 刘守信, 房喻, 胡道道, 吕宏旺. 聚甲基丙烯酸与修饰聚丙烯酰胺间的络合作用[J]. 物理化学学报, 2000, 16(03): 214-220.
[13] 韩奎,徐永生,马世红,王国益,罗龙根,陆兴泽. 半花菁LB多层膜的光学非线性各向异性研究[J]. 物理化学学报, 1996, 12(07): 589-593.