Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (6): 1181-1188    DOI: 10.3866/PKU.WHXB201703151
论文     
氮化钛纳米线的结构特征及其对Ⅴ(Ⅱ)/Ⅴ(Ⅲ)的电极过程
赵峰鸣1,闻刚1,孔丽瑶2,褚有群2,*(),马淳安1,*()
1 浙江工业大学化学工程学院,杭州310014
2 绿色化学合成技术国家重点实验室培育基地,杭州310014
Structure Characteristic of Titanium Nitride Nanowires and Its Electrode Processes for Ⅴ(Ⅱ)/Ⅴ(Ⅲ) Redox Couple
Feng-Ming ZHAO1,Gang WEN1,Li-Yao KONG2,You-Qun CHU2,*(),Chun-An MA1,*()
1 College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
2 State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Hangzhou 310014, P. R. China
 全文: PDF(2565 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

采用水热法在钛片表面直接生长二氧化钛纳米线(TiO2 NWs),随后通过氨氮还原转化为氮化钛纳米线(TiN NWs)。利用扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、循环伏安法(CV)和电化学阻抗谱(EIS)对材料的组成、微观结构和电极过程动力学的特征进行表征。结果表明,TiN NWs纳米线的直径约20-50 nm,长度超过5 μm,其表面可能存在Ti-N键、Ti-O键和O-Ti-N键,这种含氮和含氧的化学态使得TiN NWs电极具有更好的电导性和电催化性能。TiN NWs电极对Ⅴ(Ⅱ)/Ⅴ(Ⅲ)离子表现出更好的可逆性,其电极反应电阻Rct值比TiO2 NWs和石墨电极分别小约20倍和10倍。同时,TiN NWs电极上Ⅴ(Ⅲ)还原反应的速率常数为5.21×10-4 cm·s-1,约是石墨电极(速率常数9.63×10-5 cm·s-1)的5倍,这可归因于TiN NWs的一维纳米线微结构特征及其较高的电催化性能。

关键词: 钒电池氮化钛纳米线Ⅴ(Ⅱ)/Ⅴ(Ⅲ)电极过程    
Abstract:

Titanium nitride nanowires (TiN NWs) were directly prepared on a Ti foil by a hydrothermal method followed by nitridation in ammonia atmosphere. The composition, microstructure, and electrochemical properties of the TiN NWs were characterized using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry(CV), and electrochemical impedance spectroscopy (EIS). The results show that the nanowires have diameters of 20-50 nm and are 5 μm long. The surfaces of the TiN NWs comprise Ti-N, Ti-O, and O-Ti-N chemical states. The electrochemical activity and reversibility for the electrode processes of Ⅴ(Ⅱ)/Ⅴ(Ⅲ) couple on the TiN NWs are significantly improved due to the introduced Ti-N, Ti-O, and O-Ti-N chemical states. The transfer resistance for the cathodic reduction of Ⅴ(Ⅲ) on the TiN NWs is about 20 times and 10 times smaller than on TiO2 NWs and graphite electrodes, respectively. The rate constant of charge transfer on the TiN NWs electrode was determined to be 5.21×10-4 cm·s-1, which is about 5 times larger than the rate constant on graphite electrodes (9.63×10-5 cm·s-1).

Key words: Vanadium battery    Titanium nitride nanowire    Ⅴ(Ⅱ)/Ⅴ(Ⅲ)    Electrode process
收稿日期: 2016-12-27 出版日期: 2017-03-15
中图分类号:  O646  
基金资助: 浙江省自然科学基金资助项目(LY17B050006)
通讯作者: 褚有群,马淳安     E-mail: chuyq@zjut.edu.cn;science@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵峰鸣
闻刚
孔丽瑶
褚有群
马淳安

引用本文:

赵峰鸣,闻刚,孔丽瑶,褚有群,马淳安. 氮化钛纳米线的结构特征及其对Ⅴ(Ⅱ)/Ⅴ(Ⅲ)的电极过程[J]. 物理化学学报, 2017, 33(6): 1181-1188.

Feng-Ming ZHAO,Gang WEN,Li-Yao KONG,You-Qun CHU,Chun-An MA. Structure Characteristic of Titanium Nitride Nanowires and Its Electrode Processes for Ⅴ(Ⅱ)/Ⅴ(Ⅲ) Redox Couple. Acta Physico-Chimica Sinca, 2017, 33(6): 1181-1188.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201703151        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I6/1181

图1  (a)TiO2 NWs、(b)TiN NWs的SEM形貌
图2  TIN NWs的(a)TEM和(b)HRTEM照片
图3  TiN NWs的(a)XRD图和(b)EDX能谱图
(hkl)2θ/(°)Δ(2θ)/(°)
standard TIN*TiN NWs
(111)36.80636.827↑0.021
(200)42.61242.747↑0.135
(220)61.98262.095↑0.113
(311)74.20074.283↑0.083
(222)78.07778.349↑0.272
表1  由XRD获得的TiN NWs衍射峰2θ数据及其与标准TiN峰偏移数据
图4  (a)N 1s、(b)Ti 2p和(c)O 1s的TiN NWs的高分辨XPS谱图
图5  (a)TiO2 NWs、(b)TiN NWs、(c)石墨电极的循环伏安曲线
图6  TiO2 NWs(▼)、TiN NWs(◆)和石墨(●)电极的电化学阻抗谱
SampleRs /?Rct/?Rw/?
TiO2 NWs0.789.56/
TiN NWs0.520.466.71
Graphite0.734.9010.90
表2  由图6得到的EIS拟合数据
图7  (a)石墨电极和(b)TiN NWs电极在不同扫描速率下的循环伏安曲线
图8  (a)石墨和(b)TiN NWs电极上lnIp与(Ep-E0)的关系曲线
1 Poullikkas A. Renew. Sust. Energ. Rev. 2013, 27, 778.
doi: 10.1016/j.rser.2013.07.017
2 Alotto P. ; Guarnieri M. ; Moro F. Renew. Sust. Energ. Rev. 2014, 29, 325.
doi: 10.1016/j.rser.2013.08.001
3 Kear G. ; Shah A. A. ; Walsh F. C. Int. J. Energ. Res. 2012, 36, 1105.
doi: 10.1002/er.1863
4 Li W. Y. ; Liu J. G. ; Yan C. W. Electrochim. Acta 2012, 79, 102.
doi: 10.1016/j.electacta.2012.06.109
5 He Z. X. ; Dai L. ; Liu S. Q. ; Wang L. ; Li C. C. Electrochim. Acta 2015, 176, 1434.
doi: 10.1016/j.electacta.2015.07.067
6 Li W. Y. ; Zhang Z. Y. ; Tang Y. B. ; Bian H. D. ; Ng T. W. ; Zhang W. J. ; Lee C. S. Adv. Sci. 2016, 3, 1500276.
doi: 10.1002/advs.201500276
7 Park M. J. ; Jeon I. Y. ; Ryu J. C. ; Jang H. S. ; Back J. B. Nano Energ. 2016, 26, 233.
doi: 10.1016/j.nanoen.2016.05.027
8 Tsai H. M. ; Yang S. J. ; Ma C. C. M. ; Xie X. F. Electrochim. Acta 2012, 77, 232.
doi: 10.1016/j.electacta.2012.05.099
9 Wang W. H. ; Wang X. D. Electrochim. Acta 2007, 52, 6755.
doi: 10.1016/j.electacta.2007.04.121
10 Suare D. J. ; Gonzalez Z. ; Blanco C. ; Granda M. ; Menendez R. ; Santamaria R. ChemSusChem 2014, 7, 914.
doi: 10.1002/cssc.201301045
11 Li B. ; Gu M. ; Nie Z. M. ; Shao Y. Y. ; Luo Q. T. ; Wei X. L. ; Li X. L. ; Xiao J ; Wang C.M. ; Sprenkle V. ; Wang W. Nano Lett. 2013, 13, 1330.
doi: 10.1021/nl400223v
12 He Z. X. ; Liu J. L. ; He Z. ; Liu S. Q. Chin. J. Inorg. Mater. 2015, 30 (7), 779.
doi: 10.15541/jim20140656
何章兴; 刘剑蕾; 何震; 刘素琴. 无机材料学报, 2015, 30 (7), 779.
doi: 10.15541/jim20140656
13 Su A. Q. ; Wang N. F. ; Liu S. Q. ; Wu T. ; Peng S Acta Phys. -Chim. Sin. 2012, 28 (6), 1387.
doi: 10.3866/PKU.WHXB201204013
苏安群; 汪南方; 刘素琴; 吴涛; 彭穗. 物理化学学报, 2012, 28 (6), 1387.
doi: 10.3866/PKU.WHXB201204013
14 Gao C. ; Wang N. F. ; Peng S. ; Liu S. Q. ; Lei Y. ; Liang X. X. ; Zeng S. S. ; Zi H. F. Electrochim. Acta 2013, 88, 193.
doi: 10.1016/j.electacta.2012.10.021
15 Men Y. ; Sun T. Int. J. Electrochem. Sci. 2012, 7, 3482.
16 Kaskel S. ; Schlichte K. ; Kratzke T. J. Mol. Catal. A-Chem. 2004, 208, 291.
doi: 10.1016/S1381-1169(03)00545-4
17 Lemme M. C. ; Efavi J. K. ; Mollenhauer T. ; Schmidt M. ; Gottlob H. D. B. ; Wahlbrink T. ; Kurz H. Microelectron. Eng. 2006, 83, 1551.
doi: 10.1016/j.mee.2006.01.161
18 Ponon N. K. ; Appleby D. J. R. ; Arac E. ; King P. J. ; Ganti S. ; Kwa K. S. K. ; O'Neill A. Thin Solid Films 2015, 578, 31.
doi: 10.1016/j.tsf.2015.02.009
19 Zheng H. ; Fang S. ; Tong Z. K. ; Pang G. ; Shen L. F. ; Li H. S. ; Yang L. ; Zhang X. G. J. Mater. Chem. A 2015, 3, 12476.
doi: 10.1039/c5ta02259b
20 Kakinuma K. ; Wakasugi Y. ; Uchida M. ; Kamino T. ; Uchida H. ; Deki S. ; Watanabe M. Electrochim. Acta 2012, 77, 279.
doi: 10.1016/j.electacta.2012.06.001
21 Xie Y. B. ; Fang X. Q. Electrochim. Acta 2014, 120, 273.
doi: 10.1016/j.electacta.2013.12.103
22 Wang G. Q. ; Liu S.M. Mater. Lett. 2015, 161, 294.
doi: 10.1016/j.matlet.2015.08.110
23 Yang C. M. ; Wang H. N. ; Lu S. F. ; Wu C. X. ; Liu Y. Y. ; Tan Q. L. ; Liang D. W. ; Xiang Y. Electrochim. Acta 2015, 182, 834.
doi: 10.1016/j.electacta.2015.09.155
24 Wei L. ; Zhao T. S. ; Zeng L. ; Zeng Y. K. ; Jiang H. R. J. Power Sources 2017, 341, 318.
doi: 10.1016/j.jpowsour.2016.12.016
25 Mosavati N. ; Chitturi V. R. ; Salley S. O. ; Ng K. Y. S. J. Power Sources 2016, 321, 87.
doi: 10.1016/j.jpowsour.2016.04.099
26 H Y. J. ; Yue X. ; Jin Y. S. ; Huang X. D. ; Shen P. K. J. Mater Chem. A 2016, 4, 3673.
doi: 10.1039/c5ta09976e
27 Liu M. Y. ; Ma Y. L. ; Su L. ; Chou K. C. ; Hou X. M. Analyst 2016, 141, 1693.
doi: 10.1039/c5an02675j
28 Ohnishi R. ; Katayama M. ; Cha D. K. ; Takanabe K. ; Kubota J. ; Domen K. J. Electrochem. Soc 2013, 160 (6), F501.
doi: 10.1149/2.053306jes
29 Thotiyl M. M. O. ; Kumar T. R. ; Sampath S. J. Phys. Chem. C 2010, 114, 17934.
doi: 10.1021/jp1038514
30 Chan M. H. ; Lu F. H. Thin Solid Films 2009, 517, 5006.
doi: 10.1016/j.tsf.2009.03.100
31 Liu H. J. ; Yang L. X. ; Xu Q. ; Yan C. W. RSC Adv 2014, 4, 55666.
doi: 10.1039/c4ra09777g
[1] 苏安群, 汪南方, 刘素琴, 吴涛, 彭穗. 水热氧化改性碳纸电极在全钒氧化还原电池中的应用[J]. 物理化学学报, 2012, 28(06): 1387-1392.
[2] 文越华;张华民;钱鹏;赵平;周汉涛;衣宝廉. 全钒液流电池高浓度下V(IV)/V(V)的电极过程研究[J]. 物理化学学报, 2006, 22(04): 403-408.
[3] 苏育志;郭仕恒;萧翼之;肖敏;杨绮琴. 2,2’-二氨基苯氧基二硫化物的电极过程动力学研究[J]. 物理化学学报, 2004, 20(05): 518-523.
[4] 章萍萍;张五昌;张挺芳;周文娟;王志勤. 钯(II)配合物和氯化锌在DMF中阴极还原的动力学[J]. 物理化学学报, 1992, 8(05): 668-672.