Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (6): 1108-1113    DOI: 10.3866/PKU.WHXB201703222
论文     
金属粉末的吸氢统计热力学模型
吴广新1,2,3,*(),彭望君1,2,3,张捷宇1,2,3
1 上海大学,高品质特殊钢冶金与制备国家重点实验室,上海200072
2 上海大学,上海钢铁冶金新技术重点实验室,上海200072
3 上海大学,材料科学与工程学院,上海200072
Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders
1 State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai 200072, P. R. China
2 Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200072, P. R. China
3 Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, P. R. China
 全文: PDF(1374 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

提出了一种基于零阶Bragg-Williams近似的新统计热力学模型。新模型的独特之处在于引入了表观压缩系数α来校正高压气体的体积变化,并且在拟合结果中获得无环状曲线。然后,新模型成功应用于金属粉末的吸氢过程。所有结果表明这个新模型运行很好,特别是新模型可用于预测不同温度下的PCT曲线。因此,我们的新模型可以在实际系统中应用。

关键词: 统计热力学理论氢化过程储氢材料粉末    
Abstract:

Based on zero-order Bragg-Williams approximation, a new statistic thermodynamic model is presented herein. The distinctive feature of the new model is that an apparent compressibility factor α is introduced to correct the volume change of high-pressure gases and ensure no loop-like curves are obtained in the fitting results. The new model is successfully applied to investigate hydrogen absorption on metal powders. Our results indicate that the model works very well and can be used to predict PCT curves at different temperatures. Hence, our new model exhibits significant potential for application in practical systems.

Key words: Statistic thermodynamic theory    Hydriding process    Hydrogen storage materials powder
收稿日期: 2016-12-09 出版日期: 2017-03-22
中图分类号:  O642  
基金资助: The project was supported by the National Natural Science Foundation of China(51104098);The project was supported by the National Natural Science Foundation of China(51674163);Science and Technology Committee of Shanghai, China(14521100603);Science and Technology Committee of Shanghai, China(16ZR1412000)
通讯作者: 吴广新     E-mail: gxwu@shu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴广新
彭望君
张捷宇

引用本文:

吴广新,彭望君,张捷宇. 金属粉末的吸氢统计热力学模型[J]. 物理化学学报, 2017, 33(6): 1108-1113.

链接本文:

http://www.whxb.pku.edu.cn/CN/Y2017/V33/I6/1108

Fig 1  Schematic illumination of our new PCT model and Lacher-type model
Fig 2  Our PCT function plots at various α values With the value of α increasing from 1 to 100, it can be seen that the shape of the curves change from S-type to linear-type.
Fig 3  Comparison between the experimental (points) and the fitted (solid lines) isotherms
T?1/K?1C = 0.3C = 0.5C = 0.7
1/5782.5330062.6366832.731689
1/5602.0582432.1415122.229907
1/5431.5771631.6548131.726456
Table 1  Data of T?1 versus lnP for C = 0.3, C = 0.5 and C = 0.7 fitted by the equation
Fig 4  Van't Hoff plots for some H/M composition ratios
H/Mg molar ratioΔH/(kJ·mol?1)ΔS/(J·mol?1·K?1)
0.3?71.2276?144.262
0.5?73.1661?148.48
0.7?74.9076?152.297
Table 2  Data of slope and intercept for C = 0.3, C = 0.5 and C = 0.7
Fig 5  Partial molar ΔH and ΔS as a function of H/M composition ratio
Fig 6  Comparison between the experimental (points) and the fitted (solid lines) isotherms All pressure values were corrected to fugacities.
T?1/K?1C = 0.3C = 0.5C = 0.7
1/5730.4229780.5624690.702206
1/5630.1581140.2711720.401725
1/553?0.11878?0.03170.061377
Table 3  Data of T?1 versus lnP for C = 0.2, C = 0.35 and C = 0.5 fitted by the equation
Fig 7  Van't Hoff plots for some H/M composition ratios
H/Mg molar ratioΔH/(kJ·mol?1)ΔS/(J·mol?1·K?1)
0.3?71.3303?128.004
0.5?78.2288?141.201
0.7?84.3939?153.16
Table 4  Data of slope and intercept for C = 0.3, C = 0.5 and C = 0.7
Fig 8  Partial molar ΔH and ΔS as a function of H/M composition ratio
Fig 9  Partial molar ΔH and ΔS as a function of H/M composition ratio
1 Lacher J. R. A Theoretical Formula for the Solubility of Hydrogen in Palladium. In Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences (1934-1990) 1937, p 525.
2 Beeri O. ; Cohen D. ; Gavra Z. ; Johnson J. R. ; Mintz M. H. J. Alloy. Compd. 1998, 267, 113.
doi: 10.1016/S0925-8388(97)00521-5
3 Beeri O. ; Cohen D. ; Gavra Z. ; Mintz M. H. J. Alloy. Compd. 2003, 352, 111.
doi: 10.1016/S0925-8388(02)01155-6
4 Lexcellent C. ; Gondor G. Intermetallics. 2007, 15, 934.
doi: 10.1016/j.intermet.2006.11.002
5 Fang, S. ; Zhou, Z. ; Zhang, J. ; Yao, M. ; Feng, F. ; Northwood, D. O. J. Alloy. Compd. 1999, 293-295, 10. doi: 10.1016/S0925-8388(99)00380-1
6 Fang S. ; Zhou Z. ; Zhang J. ; Yao M. ; Feng F. ; Northwood D. O. Int. J. Hydrog. Energy 2000, 25, 143.
doi: 10.1016/S0360-3199(99)00032-4
7 Zhou Z.Q. ; Fang S.S. ; Feng F. Trans. Nonferrous Met. Soc. China 2003, 13, 864.
8 Lototsky M. ; Yartys V. ; Marinin V. ; Lototsky N. J. Alloy. Compd. 2003, 356, 27.
doi: 10.1016/S0925-8388(03)00095-1
9 Lototskyy M. ; Yartys V. ; Pollet B. ; Bowman R. Int. J. Hydrog. Energy 2014, 39, 5818.
doi: 10.1016/j.ijhydene.2014.01.158
10 Davidson D. ; Raman S. S. ; Lototsky M. ; Srivastava O. Int. J. Hydrog. Energy 2003, 28, 1425.
doi: 10.1016/S0360-3199(02)00194-5
11 Lototskyy M. ; Klochko Y. ; Linkov V. ; Lawrie P. ; Pollet B. Energy Procedia 2012, 29, 347.
doi: 10.1016/j.egypro.2012.09.041
12 Jewell L.L. ; Davis B. H. Appl. Catal. A-Gen. 2006, 310, 1.
doi: 10.1016/j.apcata.2006.05.012
13 Wagner C. Acta Metall. 1971, 19, 843.
doi: 10.1016/0001-6160(71)90140-4
14 Kuji T. ; Oates W. ; Bowerman B. ; Flanagan T. J. Phys. F: Metal. Phys. 1983, 13, 1785.
doi: 10.1088/0305-4608/13/9/007
15 Chabane D. ; Harel F. ; Djerdir A. ; Candusso D. ; Elkedim O. ; Fenineche N. Int. J. Hydrog. Energy 2016, 41, 11682.
doi: 10.1016/j.ijhydene.2015.12.048
16 Oates W. ; Flanagan T. B. J. Mater. Sci. 1981, 16, 3235.
doi: 10.1007/BF00586283
17 Young K. ; Ouchi T. ; Fetcenko M. J. Alloy. Compd. 2009, 480, 440.
doi: 10.1016/j.jallcom.2009.03.194
18 Payá J. ; Linder M. ; Laurien E. ; Corberán J. J. Alloy. Compd. 2009, 484, 190.
doi: 10.1016/j.jallcom.2009.05.069
19 Hill T. L. An Introduction to Statistical Thermodynamics New York: Dover Publications, 1986.
20 Fowler R. H. ; Guggenheim E. A. Statistical Thermodynamics of Super-Lattices, Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences (1934-1990) 1940, 174, 189.
doi: 10.1098/rspa.1940.0014
21 Tanaka T. ; Keita M. ; Azofeifa D. E. Phys. Rev. B 1981, 24, 1771.
doi: 10.1103/PhysRevB.24.1771
22 Bragg, W. L. ; Williams, E. J. The Effect of Thermal Agitation on Atomic Arrangement in Alloys, In Proceedings of the Royal Society of London. Series A, 1934; p 699.
23 Fukai, Y. The Metal-Hydrogen System; Springer-Verlag: Berlin, Heidelberg, 1993.
24 Lototskyy M. Int. J. Hydrog. Energy 2016, 41, 2739.
doi: 10.1016/j.ijhydene.2015.12.055
25 Saita, I. ; Toshima, T. ; Tanda, S. ; Akiyama, T. J. Alloy. Compd. 2007, 446-447, 80. doi: 10.1016/j.jallcom.2007.04.020
26 Zeng K. ; Klassen T. ; Oelerich W. ; Bormann R. Int. J. Hydrog. Energy 1999, 24, 989.
doi: 10.1016/S0360-3199(98)00132-3
27 Li Q. ; Chou K. C. ; Xu K. D. ; Lu X. G. ; Zhang J. Y. ; Lin Q. ; Jiang L. J. J. Mater. Sci. Eng: A 2007, 457, 1.
doi: 10.1016/j.msea.2007.01.120
[1] 薛智敏, 严传玉, 赵新辉, 于东琨, 牟天成. Hofmeister离子对水溶液中热响应聚合物的局域环境的影响[J]. 物理化学学报, 0, (): 0-0.
[2] 陈文君, 薛智敏, 王晋芳, 蒋静云, 赵新辉, 牟天成. 低共熔溶剂的热稳定性研究[J]. 物理化学学报, 0, (): 0-0.
[3] 佟静,屈晔,井立强,刘璐,刘春辉. 用恒温热重法测定1-己基-3-甲基咪唑苏氨酸离子液体[C6mim][Thr]蒸汽压和蒸发焓[J]. 物理化学学报, 2018, 34(2): 194-200.
[4] 胡之楠, 左剑涛, 夏美晨, 房大维, 臧树良. Pitzer方程应用于离子液体[Cnmim][H2OP4](n=3,4,5,6)溶解焓研究[J]. 物理化学学报, 0, (): 0-0.
[5] 袁莲,刘玉娇,何欢,蒋风雷,李会荣,刘义. 不同条件下离体大鼠肝脏线粒体能量代谢微量热分析[J]. 物理化学学报, 2018, 34(1): 73-80.
[6] 崔鹏,刘海,于雪敏,夏青,李青松. 水-环己酮-甲基异丁基酮液液相平衡数据的测定与关联[J]. 物理化学学报, 2018, 34(1): 65-72.
[7] 魏杰, 董贺新, 陈霞, 杨宇轩, 房大维, 关伟, 杨家振. 1-甲氧基乙基-3-甲基咪唑甘氨酸离子液体的物理化学性质的研究[J]. 物理化学学报, 0, (): 0-0.
[8] 颜稔,赖璐,许子强,蒋风雷,刘义. 量子点与蛋白质相互作用热力学[J]. 物理化学学报, 2017, 33(12): 2377-2387.
[9] 高云燕, 蔡温姣, 欧植泽, 马拖拖, 倚娜, 李志远. 咪唑修饰萘酰亚胺与DNA的作用及其细胞毒性[J]. 物理化学学报, 0, (): 0-0.
[10] 刘为燕,李亚东,刘甜,干林. 单分散铁氧体纳米颗粒的生长机制与成分偏聚的透射电子显微研究[J]. 物理化学学报, 2017, 33(10): 2106-2112.
[11] 陈合龙.,韦昌富.,田慧会.,魏厚振.. CO2水合物在砂中生成和分解的核磁共振弛豫响应[J]. 物理化学学报, 2017, 33(8): 1599-1604.
[12] 李旭,李强国,蒋建宏,谷惠文,李传华,肖圣雄,李霞. 一种精密恒温环境微量燃烧-溶解-反应多用量热计的设计及应用[J]. 物理化学学报, 2017, 33(6): 1114-1122.
[13] 周婷婷, 宋华杰, 黄风雷. 冲击载荷下TATB晶体滑移和各向异性的分子动力学研究[J]. 物理化学学报, 2017, 33(5): 949-959.
[14] 白光月, 刘君玲, 王九霞, 王玉洁, 李艳娜, 赵扬, 姚美焕. 阳离子双子表面活性剂诱导的α-CT超活性和构象变化[J]. 物理化学学报, 2017, 33(5): 976-983.
[15] 郑其格, 刘惠, 夏泉, 刘青山, 牟林. 两种疏水型膦类离子液体的密度、动力粘度及电导率[J]. 物理化学学报, 2017, 33(4): 736-744.