Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (6): 1236-1241    DOI: 10.3866/PKU.WHXB201703281
论文     
环己烯对噻吩在CuY分子筛上吸附的影响机制
莫周胜1,秦玉才2,张晓彤2,段林海2,宋丽娟1,2,*()
1 中国石油大学(华东)化学工程学院,山东青岛266555
2 辽宁石油化工大学,辽宁省石油化工催化科学与技术重点实验室,辽宁抚顺113001
Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites
1 College of Chemistry & Chemical Engineering, China University of Petroleum(East China), Qingdao 266555, Shandong Province, P. R. China
2 Key Laboratory of Petrochemical Catalytic Science and Technology of Liaoning Province, Liaoning Shihua University, Fushun 113001, Liaoning Province, P. R. China
 全文: PDF(1935 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

利用液相离子交换法制备了CuY分子筛,并用X射线光电子能谱分析(XPS)对Cu元素进行了价态表征,用原位傅里叶转换红外(in-situ FTIR)和氨气程序升温脱附(NH3-TPD)技术对其进行了酸性表征。同时,以噻吩和环己烯为探针分子,CuY分子筛为吸附剂,研究了环己烯对噻吩在CuY分子筛B酸中心上吸附的影响机制。实验结果显示,CuY分子筛表层的Cu离子主要以Cu+为主,其表面酸性主要由中强B酸和L酸组成。与稀土离子不同的是,铜离子的存在抑制了噻吩或环己烯在B酸中心上的聚合反应。因此,环己烯主要通过与噻吩的竞争吸附影响噻吩在CuY分子筛B酸性位上的吸附。

关键词: 原位傅里叶转换红外光谱质子酸竞争吸附反协同效应    
Abstract:

A CuY zeolite prepared by liquid phase ion exchange was characterized by X-ray photoelectron spectroscopy, pyridine in situ Fourier transform infrared (in situ FTIR) spectroscopy, and ammonia temperature programmed desorption. The effect of cyclohexene on the adsorption of thiophene over the prepared CuY zeolite was explored by in situ FTIR. In particular, the role of the zeolite's Br?nsted acidity was investigated in the adsorption process. The results show that the percentage of Cu+ on the surface of the CuY zeolite can reach 77%. The surface acidity of the CuY zeolite mainly comprises medium and strong Br?nsted acidity and Lewis acidity. According to the adsorption results, cyclohexene negatively influences thiophene adsorption on the Br?nsted or Lewis acid sites in CuY by competitive adsorption. Although polymerization of thiophene and cyclohexene can occur easily on the HY or REY zeolites, the presence of Br?nsted acids in the CuY zeolite was not sufficient to polymerize either thiophene or cyclohexene. This difference may be caused by an anti-synergistic effect between the Cu ions of the CuY zeolite and neighboring Br?nsted acid sites, the result of which inhibits the polymerization of adsorbed thiophene and cyclohexene.

Key words: In-situ FTIR spectroscopy    Br?nsted acidity    Competitive adsorption    Anti-synergistic effect
收稿日期: 2016-11-25 出版日期: 2017-03-28
中图分类号:  O643  
基金资助: National Natural Science Foundation of China(21376114);National Natural Science Foundation of China(21476101);Major Program of Petroleum Refining of Catalyst of PetroChina Company Limited(10-01A-01-01-01)
通讯作者: 宋丽娟     E-mail: lsong56@263.net
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
莫周胜
秦玉才
张晓彤
段林海
宋丽娟

引用本文:

莫周胜,秦玉才,张晓彤,段林海,宋丽娟. 环己烯对噻吩在CuY分子筛上吸附的影响机制[J]. 物理化学学报, 2017, 33(6): 1236-1241.

链接本文:

http://www.whxb.pku.edu.cn/CN/Y2017/V33/I6/1236

Fig 1  XPS spectra of Cu ion in CuY zeolite
Fig 2  Py-FTIR spectra of CuY zeolite (a) background; (b) pyridine desorption at 150 ℃; (c) pyridine desorption at 400 ℃ for 0.5 h
Fig 3  NH3-TPD spectra of CuY zeolite
Fig 4  FTIR spectra of thiophene adsorbed on CuY zeolite (a) background; (b) desorption at RT; (c) desorption at 100 ℃; (d) desorption at 200 ℃; (e) desorption at 300 ℃; (f) desorption at 400 ℃
Fig 5  FTIR spectra of cyclohexene adsorbed on CuY zeolite (a) background; (b) desorption at RT; (c) desorption at 100 ℃; (d) desorption at 200 ℃; (e) desorption at 300 ℃; (f) desorption at 400 ℃
Fig 6  FTIR spectra of thiophene and cyclohexene adsorbed on CuY zeolite (a) background; (b) desorption at RT; (c) desorption at 100 ℃; (d) desorption at 200 ℃; (e) desorption at 300 ℃; (f) desorption at 400 ℃
Fig 7  FTIR spectra of cyclohexene and thiophene adsorbed on CuY zeolite (a) background; (b) desorption at RT; (c) desorption at 100 ℃; (d) desorption at 200 ℃; (e) desorption at 300 ℃; (f) desorption at 400 ℃
1 Saha B. ; Sengupta S. Fuel 2015, 150, 679.
doi: 10.1016/j.fuel.2015.02.078
2 Dasgupta S. ; Agnihotri V. ; Gupta P. ; Nanoti A. ; Garg M. O. ; Goswami A. N. Catal. Today 2009, 141, 84.
doi: 10.1016/j.cattod.2008.04.005
3 Li D. D. Chin. J. Catal. 2013, 34, 48.
doi: 10.1016/S1872-2067(11)60508-1
李大东. 催化学报, 2013, 34, 48.
doi: 10.1016/S1872-2067(11)60508-1
4 Mortaheb H. R. ; Ghaemmaghami F. ; Mokhtarani B. Chem. Eng. Res. Des. 2012, 90, 409.
doi: 10.1016/j.cherd.2011.07.019
5 Sitamraju S. ; Xiao J. ; Janik M. J. ; Song C. S. J. Phys. Chem. C 2015, 119, 5903.
doi: 10.1021/jp510326h
6 Lv L. ; Zhang J. ; Huang C. ; Lei Z. ; Chen B. Sep. Purif. Technol. 2014, 125, 247.
doi: 10.1016/j.seppur.2014.02.002
7 Xiao J. ; Li Z. ; Liu B. ; Xia Q. ; Yu M. Energy Fuels 2008, 22, 3858.
doi: 10.1021/ef800437e
8 Hernández-Maldonado A. J. ; Qi G. ; Yang R. T. Appl. Catal. B: Environ. 2005, 61, 212.
doi: 10.1016/j.apcatb.2005.05.003
9 Wang Y. ; Yang R. T. ; Heinzel J. M. Chem. Eng. Sci. 2008, 63, 356.
doi: 10.1016/j.ces.2007.09.002
10 Shao X. C. ; Zhang X. T. ; Yu W. G. ; Wu Y. Y. ; Qin Y. C. ; Sun Z. L. ; Song L. J. Appl. Surf. Sci. 2012, 263, 1.
doi: 10.1016/j.apsusc.2012.07.142
11 Shao X. C. ; Duan L. H. ; Wu Y. Y. ; Qin Y. C. ; Yu W. G. ; Wang Y. ; Li H. L. ; Sun Z. L. ; Song L. J. Acta Phys. -Chim. Sin. 2012, 28, 1467.
doi: 10.3866/PKU.WHXB201203312
邵新超; 段林海; 武玉叶; 秦玉才; 于文广; 王源; 李怀雷; 孙兆林; 宋丽娟. 物理化学学报, 2012, 28, 1467.
doi: 10.3866/PKU.WHXB201203312
12 Sui P. P. ; Meng X. H. ; Wu Y. Y. ; Zhao Y. Y. ; Song L. J. ; Sun Z. L. ; Duan L. H. ; Umar A. ; Wang Q. Sci. Adv. Mater. 2013, 5, 1132.
doi: 10.1166/sam.2013.1564
13 Sun H. Y. ; Sun L. P. ; Li F. ; Zhang L. Fuel Process. Technol. 2015, 134, 284.
doi: 10.1016/j.fuproc.2015.02.010
14 Montazerolghaem M. ; Seyedeyn-Azad F. ; Rahimi A. Korean J. Chem. Eng. 2014, 32, 328.
doi: 10.1007/s11814-014-0213-1
15 Yang R. T. ; Hernández-Maldonado A. J. ; Yang F. H. Science 2003, 301, 79.
doi: 10.1126/science.1085088
16 Hernández-Maldonado A. J. ; Yang R. T. Ind. Eng. Chem. Res. 2003, 42, 123.
doi: 10.1021/ie020728j
17 Hernández-Maldonado A. J. ; Yang F. H. ; Qi G. ; Yang R. T. Appl. Catal. B: Environ. 2005, 56, 111.
doi: 10.1016/j.apcatb.2004.06.023
18 King D. L. ; Li L. Catal. Today 2006, 116, 526.
doi: 10.1016/j.cattod.2006.06.026
19 Song H. ; Cui X. H. ; Song H. L. ; Gao H. J. ; Li F. Ind. Eng. Chem. Res. 2014, 53, 14552.
doi: 10.1021/ie404362f
20 Song H. ; Wan X. ; Dai M. ; Zhang J. ; Li F. ; Song H. Fuel Process. Technol. 2013, 116, 52.
doi: 10.1016/j.fuproc.2013.04.017
21 Velu S. ; Ma X. L. ; Song C. S. Ind. Eng. Chem. Res. 2003, 42, 5293.
doi: 10.1021/ie020995p
22 Shi Y. C. ; Yang X. J. ; Tian F. P. ; Jia C. Y. ; Chen Y. Y. J. Nat. Gas Chem. 2012, 21, 421.
doi: 10.1016/S1003-9953(11)60385-X
石艳春; 杨潇健; 田福平; 贾翠英; 陈永英. 天然气化学, 2012, 21, 421.
doi: 10.1016/S1003-9953(11)60385-X
23 Wang H. G. ; Song L. J. ; Jiang H. ; Xu J. ; Jin L. L. ; Zhang X. T. ; Sun Z. L. Fuel Process. Technol. 2009, 90, 835.
doi: 10.1016/j.fuproc.2009.03.004
24 Liao J. J. ; Bao W. R. ; Chang L. P. Fuel Process. Technol. 2015, 140, 104.
doi: 10.1016/j.fuproc.2015.08.036
25 Geobaldo F. ; Palomino G. T. ; Bordiga S. ; Zecchina A. ; Areán C. O. Phys. Chem. Chem. Phys. 1999, 1, 561.
doi: 10.1039/A807353H
26 Richardeau D. ; Joly G. ; Canaff C. ; Magnoux P. ; Guisnet M. ; Thomas M. ; Nicolaos A. Appl. Catal. A: Gen. 2004, 263, 49.
doi: 10.1016/j.apcata.2003.11.039
27 Shi Y. C. ; Zhang W. ; Zhang H. X. ; Tian F. P. ; Jia C. Y. ; Chen Y. Y. Fuel Process. Technol. 2013, 110, 24.
doi: 10.1016/j.fuproc.2013.01.008
28 Laborde-Boutet C. ; Joly G. ; Nicolaos A. ; Thomas M. ; Magnoux P. Ind. Eng. Chem. Res. 2006, 45, 6758.
doi: 10.1021/ie060168e
29 Qin Y. C. ; Mo Z. S. ; Yu W. G. ; Dong S. W. ; Duan L. H. ; Gao X. H. ; Song L. J. Appl. Surf. Sci. 2014, 292, 5.
doi: 10.1016/j.apsusc.2013.11.036
30 Qin Y. C. ; Gao X. H. ; Pei T. T. ; Zheng L. G. ; Wang L. ; Mo Z. S. ; Song L. J. J. Fuel Chem. Technol. 2013, 41, 889.
doi: 10.3969/j.issn.0253-2409.2013.07.017
秦玉才; 高雄厚; 裴婷婷; 郑兰歌; 王琳; 莫周胜; 宋丽娟. 燃料化学学报, 2013, 41, 889.
doi: 10.3969/j.issn.0253-2409.2013.07.017
31 Qin Y. C. ; Gao X. H. ; Duan L. H. ; Fan Y. C. ; Yu W. G. ; Zhang H. T. ; Song L. J. Acta Phys. -Chim. Sin. 2014, 30, 544.
doi: 10.3866/PKU.WHXB201401021
秦玉才; 高雄厚; 段林海; 范跃超; 于文广; 张海涛; 宋丽娟. 物理化学学报, 2014, 30, 544.
doi: 10.3866/PKU.WHXB201401021
32 Zhang C. ; Qin Y. C. ; Gao X. H. ; Zhang H. T. ; Mo Z. S. ; Chu C. Y. ; Zhang X. T. ; Song L. J. Acta Phys. -Chim. Sin. 2015, 31, 344.
doi: 10.3866/PKU.WHXB201412163
张畅; 秦玉才; 高雄厚; 张海涛; 莫周胜; 初春雨; 张晓彤; 宋丽娟. 物理化学学报, 2015, 31, 344.
doi: 10.3866/PKU.WHXB201412163
33 Zhang X. T. ; Yu W. G. ; Qin Y. C. ; Dong S. W. ; Pei T. T. ; Wang L. T. ; Song L. J. Acta Phys-chim. Sin. 2013, 29, 1273.
doi: 10.3866/PKU.WHXB201303183
张晓彤; 于文广; 秦玉才; 董世伟; 裴婷婷; 王陵涛; 宋丽娟. 物理化学学报, 2013, 29, 1273.
doi: 10.3866/PKU.WHXB201303183
34 Shan J. H. ; Liu X. Q. ; Sun L. B. ; Cui R. Energy Fuels 2008, 22, 3955.
doi: 10.1021/ef800296n
35 Richtera M. ; Fait M. J. G. ; Eckelt R. ; Schneider M. ; Radnik J. ; Heidemann D. ; Fricke R. J. Catal. 2007, 245, 11.
doi: 10.1016/j.jcat.2006.09.009
36 Li Z. ; Fu T. J. ; Zheng H. Y. Chin. J. Inorg. Chem. 2011, 27, 1483.
李忠; 付廷俊; 郑华艳. 无机化学学报, 2011, 27, 1483.
37 Ward J. W. J. Catal. 1967, 9, 225.
doi: 10.1016/0021-9517(67)90248-5
38 Benaliouche F. ; Boucheffa Y. ; Ayrault P. ; Mignard S. ; Magnoux P. Micropor. Mesopor. Mat. 2008, 111, 80.
doi: 10.1016/j.micromeso.2007.07.006
39 Ward J. W. J. Catal. 1971, 22, 237.
doi: 10.1016/0021-9517(71)90190-4
40 Garcia C. L. ; Lercher J. A. J. Phys. Chem. 1992, 96, 2669.
doi: 10.1021/j100185a050
41 Tang X. L. ; Shi L. Langmuir. 2011, 27, 11999.
doi: 10.1021/la2025654
42 Mills P. ; Korlann S. ; Bussell M. E. ; Reynolds M. A. ; Ovchinnikov M. V. ; Angelici R. J. ; Stinner C. ; Weber T. ; Prins R. J. Phys. Chem. A 2001, 105, 4418.
doi: 10.1021/jp010258r
43 Jolly S. ; Saussey J. ; Lavahey J. C. J. Mol. Catal. 1994, 86, 401.
doi: 10.1016/0304-5102(93)E0156-B
[1] 岳玲, 何紫萌, 王雨琴, 尚亚卓, 刘洪来. 界面扩张流变法研究C12mimBr对Gemini12-2-12在空气/水界面聚集行为的影响[J]. 物理化学学报, 2014, 30(12): 2291-2299.
[2] 张晓彤, 于文广, 秦玉才, 董世伟, 裴婷婷, 王琳, 宋丽娟. 原位傅里叶变换红外光谱研究Y型分子筛表面酸性对吸附有机分子的影响[J]. 物理化学学报, 2013, 29(06): 1273-1280.
[3] 邓琳, 祁志美. 基于光波导分光光谱技术研究蛋白质与亚甲基蓝的竞争吸附行为[J]. 物理化学学报, 2010, 26(10): 2672-2678.