Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (6): 1171-1180    DOI: 10.3866/PKU.WHXB201704071
研究论文     
有机半导体的电子电离能、亲和势和极化能的密度泛函理论研究
郭姿含, 胡竹斌, 孙真荣, 孙海涛
华东师范大学精密光谱科学与技术国家重点实验室, 物理与材料科学学院, 上海 200062
Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors
GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao
State Key Laboratory of Precision Spectroscopy, and School of Physics and Materials Science, East China Normal University, Shanghai 200062, P. R. China
 全文: PDF(1892 KB)   输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

准确预测有机半导体的能级(如电子电离能和亲和势等)对设计新型有机半导体材料和理解相关机理至关重要。从理论计算的角度看,主要挑战来自于缺少一种不仅能够在定性上合理而且在定量上精确预测,同时并不显著增加计算成本的理论方法。本文中,我们证明了通过结合极化连续介质模型(PCM)和“最优调控”区间分离密度泛函方法能够准确预测一系列有机半导体的电子电离能(IP)、亲和势(EA)和极化能,其预测结果与实验数据吻合得很好。重要的是,经过调控后分子的前线分子轨道能量(即-εHOMO和-εLUMO)与对应的IP和EA计算值很接近。调控方法的成功可以进一步归因于其能够根据不同分子体系或同种分子所处的不同状态(气态和固态)“最优”地平衡泛函中分别用于描述电子局域化和离域化的作用。相比而言,其它常见的密度泛函方法由于包含的HF%比例过低(如PBE)或过高(如M06HF和未调控的区间分离泛函),均不能给予合理的预测。因此,我们相信这种PCM-调控的方法能够为研究其它更加复杂的有机体系的能级问题提供一种更加可靠和便捷的理论工具。

关键词: 有机半导体密度泛函理论最优化调控区间分离泛函带隙    
Abstract:

Accurate prediction of the energy levels (i.e. ionization potential and electronic affinity) of organic semiconductors is essential for understanding related mechanisms and for designing novel organic semiconductor materials. From a theoretical point of view, a major challenge arises from the lack of a reliable method that can provide not only qualitative but also quantitative predictions at an acceptable computational cost. In this study, we demonstrate an approach, combining the polarizable continuum model (PCM) and the optimally tuned range-separated (RS) functional method, which provides the ionization potentials (IPs), electron affinities (EAs), and polarization energies of a series of molecular semiconductors in good agreement with available experimental values. Importantly, this tuning method can enforce the negative frontier molecular orbital energies (-εHOMO, -εLUMO) that are very close to the corresponding IPs and EAs. The success of this tuning method can be further attributed to the fact that the tuned RS functional can provide a good balance for the description of electronic localization and delocalization effects according to various molecular systems or the same molecule in different phases (i.e. gas and solid). In comparison, other conventional functionals cannot give reliable predictions because the functionals themselves include too low (i.e. PBE) or too high (i.e. M06HF and non-tuned RS functionals) HF%. Therefore, we believe that this PCM-tuned approach represents an easily applicable and computationally efficient theoretical tool to study the energy levels of more complex organic electronic materials.

Key words: Organic semiconductor    Density functional theory    Optimally-tuned    Range-separated (RS) functional    Energy level
收稿日期: 2016-12-27 出版日期: 2017-04-07
中图分类号:  O641  
基金资助:

国家自然科学基金(21603074,11474096)和上海市国际科技合作(16520721200)资助项目

通讯作者: 孙海涛     E-mail: htsun@phy.ecnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭姿含
胡竹斌
孙真荣
孙海涛

引用本文:

郭姿含, 胡竹斌, 孙真荣, 孙海涛. 有机半导体的电子电离能、亲和势和极化能的密度泛函理论研究[J]. 物理化学学报, 2017, 33(6): 1171-1180.

GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors. Acta Phys. -Chim. Sin., 2017, 33(6): 1171-1180.

链接本文:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/10.3866/PKU.WHXB201704071        http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/Y2017/V33/I6/1171

(1) Forrest, S. R.; Thompson, M. E. Chem. Rev. 2007, 107, 923. doi: 10.1021/cr0501590
(2) Heeger, A. J. Angew. Chem. 2001, 40, 2591. doi: 10.1002/1521-3773(20010716)40:14<2591::AIDANIE2591> 3.0.CO;2-0
(3) Klauk, H. (Ed.) Organic Electronics, Materials, Manufacturing and Applications; Wiley-WCH, Weinheim, 2006; pp 411-418.
(4) Müllen, K.; Wegner, G. Electronic Materials: The Oligomer Approach; Wiley-VCH: 1998; pp 235-275.
(5) Brédas, J. L.; Calbert, J. P.; da Silva Filho, D. A.; Cornil, J. Pro. Natl. Acad. Sci. U. S. A. 2002, 99, 5804. doi: 10.1073/pnas.092143399
(6) Pope, M.; Swenberg, C. E.; Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers, 2nd ed.; Oxford Univ. Press: New York, 1999; Chapter 2.
(7) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. doi: 10.1063/1.98799
(8) Bredas, J. L. Mater. Horiz. 2014, 1, 17. doi: 10.1039/c3mh00098b
(9) Kahn, A. Mater. Horiz. 2016, 3, 7. doi: 10.1039/c5mh00160a
(10) Krause, S.; Casu, M. B.; Schöll, A.; Umbach, E. New J. Phys. 2008, 10, 085001. doi: 10.1088/1367-2630/10/8/085001
(11) Ryno, S. M.; Risko, C.; Bredas, J. L. J. Am. Chem. Soc. 2014, 136, 6421. doi: 10.1021/ja501725s
(12) Sharifzadeh, S.; Biller, A.; Kronik, L.; Neaton, J. B. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 125307. doi: 10.1103/PhysRevB.85.125307
(13) Heimel, G.; Salzmann, I.; Duhm, S.; Koch, N. Chem. Mater. 2011, 23, 359. doi: 10.1021/cm1021257
(14) Hedin, L. Phys. Rev. 1965, 139, A796. doi: 10.1103/PhysRev.139.A796
(15) Hybertsen, M. S.; Louie, S. G. Phys. Rev. B 1986, 34, 5390. doi: 10.1103/PhysRevB.34.5390
(16) Chen, L.; Zhu, L.; Shuai, Z. J. Phys. Chem. A 2006, 110, 13349. doi: 10.1021/jp0652998
(17) Fabiano, E.; Sala, F. D.; Cingolani, R.; Weimer, M.; Gorling, A. J. Phys. Chem. A 2005, 109, 3078. doi: 10.1021/jp044974f
(18) Hammond, J. R.; Kowalski, K. J. Chem. Phys. 2009, 130, 194108. doi: 10.1063/1.3134744
(19) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. doi: 10.1103/PhysRev.140.A1133
(20) Seidl, A.; Görling, A.; Vogl, P.; Majewski, J. A.; Levy, M. Phys. Rev. B 1996, 53, 3764. doi: 10.1103/PhysRevB.53.3764
(21) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Science 2008, 321, 792. doi: 10.1126/science.1158722
(22) Körzdörfer, T.; Brédas, J. L. Acc. Chem. Res. 2014, 47, 3284. doi: 10.1021/ar500021t
(23) Zheng, X.; Li, C.; Zhang, D.; Yang, W. Sci. China Chem. 2015, 58, 1825. doi: 10.1007/s11426-015-5501-z
(24) Mori- Sánchez, P.; Cohen, A. J.; Yang, W. Phys. Rev. Lett. 2008, 100, 146401. doi: 10.1103/PhysRevLett.100.146401
(25) Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048. doi: 10.1103/PhysRevB.23.5048
(26) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
(27) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
(28) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
(29) Refaely-Abramson, S.; Sharifzadeh, S.; Jain, M.; Baer, R.; Neaton, J. B.; Kronik, L. Phys. Rev. B 2013, 88, 1336. doi: 10.1103/PhysRevB.88.081204
(30) Baer, R.; Livshits, E.; Salzner, U. Annu. Rev. Phys. Chem. 2010, 61, 85. doi: 10.1146/annurev.physchem.012809.103321
(31) Kleinman, L. Phys. Rev. B 1997, 56, 12042. doi: 10.1103/PhysRevB.56.12042
(32) Stein, T.; Kronik, L.; Baer, R. J. Chem. Phys. 2009, 131, 244119. doi: 10.1063/1.3269029
(33) Kronik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. J. Chem. Theory Comput. 2012, 8, 1515. doi: 10.1021/ct2009363
(34) Mennucci, B. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 386. doi: 10.1002/wcms.1086
(35) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. doi: 10.1021/cr9904009
(36) Sun, H.; Hu, Z.; Zhong, C.; Zhang, S.; Sun, Z. J. Phys. Chem. C 2016, 120, 8048. doi: 10.1021/acs.jpcc.6b01975
(37) Sun, H.; Ryno, S.; Zhong, C.; Ravva, M. K.; Sun, Z.; Körzdörfer, T.; Brédas, J. L. J. Chem. Theory Comput. 2016, 12, 2906. doi: 10.1021/acs.jctc.6b00225
(38) Boese, A. D.; Martin, J. M. J. Chem. Phys. 2004, 121, 3405. doi: 10.1063/1.1774975
(39) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
(40) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 13126. doi: 10.1021/jp066479k
(41) Sun, H.; Autschbach, J. J. Chem. Theory Comput. 2014, 10, 1035. doi: 10.1021/ct4009975
(42) Körzdörfer, T.; Sears, J. S.; Sutton, C.; Brédas, J. L. J. Chem. Phys. 2011, 135, 204107. doi: 10.1063/1.3663856
(43) Stein, T.; Kronik, L.; Baer, R. J. Am. Chem. Soc. 2009, 131, 2818. doi: 10.1021/ja8087482
(44) Ashcroft, N. W.; Mermin, N. D. Solid State Physics;Holt, Rinehart and Winston, New York, 1978, 9, 33. doi: 10.1002/piuz.19780090109
(45) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885
(46) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, 2009.
(47) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. doi: 10.1016/j.cplett.2004.06.011
(48) Vydrov, O. A.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 234109. doi: 10.1063/1.2409292
(49) Chai, J. D.; Head-Gordon, M. J. Chem. Phys. 2008, 128, 084106. doi: 10.1063/1.2834918
(50) Sugiyama, K.; Yoshimura, D.; Miyamae, T.; Miyazaki, T. J. Appl. Phys. 1998, 83, 4928. doi: 10.1063/1.367309
(51) Dandrade, B.; Datta, S.; Forrest, S.; Djurovich, P.; Polikarpov, E.; Thompson, M. Org. Electron. 2005, 6, 11. doi: 10.1016/j.orgel.2005.01.002
(52) Hill, I. G.; Kahn, A.; Cornil, J.; dos Santos, D. A.; Brédas, J. L. Chem. Phys. Lett. 2000, 317, 444. doi: 10.1016/s0009-2614(99)01384-6
(53) Tang, J. X.; Zhou, Y. C.; Liu, Z. T.; Lee, C. S.; Lee, S. T. Appl. Phys. Lett. 2008, 93, 043512. doi: 10.1063/1.2966155
(54) Chan, C. K.; Kim, E. G.; Brédas, J. L.; Kahn, A. Adv. Funct. Mater. 2006, 16, 831. doi: 10.1002/adfm.200500402
(55) Chan, M. Y.; Lai, S. L.; Lau, K. M.; Lee, C. S.; Lee, S. T. Appl. Phys. Lett. 2006, 89, 163515. doi: 10.1063/1.2362974
(56) Pfeiffer, M.; Forrest, S. R.; Leo, K.; Thompson, M. E. Adv. Mater. 2002, 14, 1633. doi: 10.1002/1521-4095(20021118)14:22<1633::AID-ADMA1633>3.0.CO;2-#
(57) Sato, N.; Seki, K.; Inokuchi, H. J. Chem. Soc., Faraday Trans. 2 1981, 77, 1621. doi: 10.1039/f29817701621
(58) Kanai, K.; Akaike, K.; Koyasu, K.; Sakai, K.; Nishi, T.; Kamizuru, Y.; Nishi, T.; Ouchi, Y.; Seki, K. Appl. Phys. A 2008, 95, 309. doi: 10.1007/s00339-008-5021-1
(59) Wang, Y.; Gao, W.; Braun, S.; Salaneck, W. R.; Amy, F.; Chan, C.; Kahn, A. Appl. Phys. Lett. 2005, 87, 193501. doi: 10.1063/1.2117623
(60) Zahn, D. R. T.; Gavrila, G. N.; Gorgoi, M. Chem. Phys. 2006, 325, 99. doi: 10.1016/j.chemphys.2006.02.003
(61) Schwenn, P. E.; Burn, P. L.; Powell, B. J. Org. Electron. 2011, 12, 394. doi: 10.1016/j.orgel.2010.11.025
(62) Tian, X.; Sun, H.; Zhang, Q.; Chihaya, A. Chin. Chem. Lett. 2016, 27, 1445. doi: 10.1016/j.cclet.2016.07.017
(63) Sun, H.; Zhong, C.; Sun, Z. Acta Phys. -Chim. Sin. 2016, 32, 2197. [孙海涛, 钟成, 孙真荣. 物理化学学报, 2016, 32, 2197.] doi: 10.3866/PKU.WHXB201605301
(64) Hu, Z.; Zhou, B.; Sun, Z.; Sun, H. J. Comput. Chem. 2017, 38, 569. doi: 10.1002/jcc.24736

[1] 尹玥琪, 蒋梦绪, 刘春光. Keggin型多酸负载的单原子催化剂(M1/POM,M=Ni,Pd,Pt,Cu,Ag,Au,POM=[PW12O40]3-)活化氮气分子的密度泛函理论计算研究[J]. 物理化学学报, 2018, 34(3): 270-277.
[2] 尹凡华, 谭凯. 符合独立五元环规则的C100(417)Cl28形成机理的密度泛函理论研究[J]. 物理化学学报, 2018, 34(3): 256-262.
[3] 钟爱国, 李嵘嵘, 洪琴, 张杰, 陈丹. 从能量和信息理论视角理解单取代烷烃的异构化[J]. 物理化学学报, 2018, 34(3): 303-313.
[4] 丁晓琴, 丁俊杰, 李大禹, 潘里, 裴承新. 基于概念密度泛函理论磷酸酯类反应性物质毒性预测[J]. 物理化学学报, 2018, 34(3): 314-322.
[5] 刘金龙, 林亮珍, 胡锦凤, 白明洁, 陈良贤, 魏俊俊, 黑立富, 李成明. 微波法制备纳米碳点反应机制与发光机理[J]. 物理化学学报, 2018, 34(1): 92-98.
[6] 陈驰, 张雪, 周志有, 张新胜, 孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[7] 刘玉玉, 李杰伟, 薄一凡, 杨磊, 张效霏, 解令海, 仪明东, 黄维. 芴基张力半导体结构和光电性质的理论研究[J]. 物理化学学报, 2017, 33(9): 1803-1810.
[8] 徐位云, 汪丽莉, 宓一鸣, 赵新新. Fe原子吸附对单层WS2结构和性质的影响[J]. 物理化学学报, 2017, 33(9): 1765-1772.
[9] 韩波, 程寒松. 镍族金属团簇在催化加氢过程中的应用[J]. 物理化学学报, 2017, 33(7): 1310-1323.
[10] 陈爱喜, 汪宏, 段赛, 张海明, 徐昕, 迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.
[11] 韩磊, 彭丽, 蔡凌云, 郑旭明, 张富山. 液态聚乙二醇CH2剪切振动和扭转振动——拉曼光谱和密度泛函理论计算[J]. 物理化学学报, 2017, 33(5): 1043-1050.
[12] 李玲玲, 陈韧, 戴戬, 孙野, 张作良, 李晓亮, 聂小娃, 宋春山, 郭新闻. 苯和甲醇在H-ZSM-5催化剂上甲基化的反应机理[J]. 物理化学学报, 2017, 33(4): 769-779.
[13] 杨绍斌, 李思南, 沈丁, 唐树伟, 孙闻, 陈跃辉. 双空位缺陷双层石墨烯储钠性能的第一性原理研究[J]. 物理化学学报, 2017, 33(3): 520-529.
[14] 吴元菲, 李明雪, 周剑章, 吴德印, 田中群. 密度泛函理论研究银上吸附对巯基吡啶的SERS化学增强效应[J]. 物理化学学报, 2017, 33(3): 530-538.
[15] 王玮, 谭凯. 单壁AlAs(111)纳米管结构和电子性质的密度泛函理论研究[J]. 物理化学学报, 2017, 33(3): 548-553.