Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (6): 1085-1107    DOI: 10.3866/PKU.WHXB201704114
综述     
LiFePO4电化学反应机理、制备及改性研究新进展
张英杰,朱子翼,董鹏,邱振平,梁慧新,李雪*()
New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4
Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI*()
 全文: PDF(6417 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

作为用于可持续能源的有效能量存储装置,锂离子电池因具有优异的电化学性能而得到广泛研究,是非常有发展潜力的储能电池体系,其技术发展及应用的关键在于电极材料的研发。LiFePO4作为锂离子电池正极材料之一,具有循环寿命长、能量密度大、充放电平稳、热稳定性良好、安全性好、重量轻和低毒性等优点,备受国内外专家的专注。然而,LiFePO4正极材料的研究还存在一些技术瓶颈,由于其存在电导率相对较低、锂离子扩散系数小以及振实密度不高等问题,导致循环性能、低温特性和高倍率充放电性能等并不理想,因而制约着它的应用和发展。近几年研究工作者通过改进制备工艺以及进行相关改性研究,旨在逐步解决上述问题。本文简要综述了LiFePO4正极材料的最新研究成果,就其结构特征、电化学反应机理、制备方法和改性进行了系统介绍。探讨了目前LiFePO4正极材料面临的主要问题及可能的解决策略,并对其未来的研究方向和应用前景进行了展望。

关键词: LiFePO4研究进展电化学反应机理制备方法改性    
Abstract:

Lithium-ion batteries have been extensively studied due to their excellent electrochemical performance as an effective energy storage device for sustainable energy sources. The key to the development and application of this technology is the improvement of electrode materials. LiFePO4 has captured the attention of researchers both home and abroad as a potential cathode material for lithium-ion batteries because of its long cycle life, energy density, stable charge/discharge performance, good thermal stability, high safety, light weight and low toxicity. However, there are still some technical bottlenecks in the application of LiFePO4, such as relatively low conductivity, low diffusion coefficient of lithium ions, and low tap density. Moreover, the cycle performance, low-temperature characteristics, and rate performance are not ideal, restricting its application and development. In recent years, researchers have sought to solve these problems by improving the preparation process and attempting related modifications. In this paper, we have provided a systemic review of the structure, electrochemical reaction mechanism, preparation, and modification of LiFePO4. The main problems associated with LiFePO4 cathode materials and possible solutions are discussed. We have also investigated the future research direction and application prospect of LiFePO4 cathode materials.

Key words: LiFePO4    Research progress    Electrochemical reaction mechanism    Preparation method    Modification
收稿日期: 2016-12-11 出版日期: 2017-04-11
中图分类号:  O646  
基金资助: 国家自然科学基金(51604132)
通讯作者: 李雪     E-mail: 438616074@qq.com
作者简介: 张英杰,1963年生。1999年博士毕业于昆明理工大学有色金属冶金专业。现为昆明理工大学冶能学院博士研究生导师、教授。主要研究方向为电化学防护与环保、电化学能源。主持省部级科研项目17项|朱子翼,1991年生。2013年本科毕业于福建工程学院材料学院材料成型专业,2015年至今为昆明理工大学材料学院材料工程专业硕士研究生。主要研究方向为锂离子电池正极材料|董鹏,1980年生。2011年博士毕业于昆明理工大学冶金物理化学专业。现为昆明理工大学冶能学院讲师。主要研究方向为金属防腐与防护|邱振平,1990年生。2013年本科毕业于兰州理工大学材料学院焊接技术与工程专业,2013年昆明理工大学材料学院材料物理与化学专业。主要研究锂离子电池NCA正极材料的制备与改性|梁慧新,1992年生。2014年本科毕业于江苏大学材料学院材料成型专业,2014年至今为昆明理工大学冶能学院冶金工程专业硕士研究生。主要研究方向为锂离子电池正极材料|李雪,1985年生。2015年博士毕业于厦门大学物理化学专业。现为昆明理工大学冶能学院讲师。主要研究方向为先进二次电池及相关能源材料,包括锂离子电池和钠离子电池。主持国家自然科学基金1项
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张英杰
朱子翼
董鹏
邱振平
梁慧新
李雪

引用本文:

张英杰,朱子翼,董鹏,邱振平,梁慧新,李雪. LiFePO4电化学反应机理、制备及改性研究新进展[J]. 物理化学学报, 2017, 33(6): 1085-1107.

Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4. Acta Physico-Chimica Sinca, 2017, 33(6): 1085-1107.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201704114        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I6/1085

图1  LiFePO4的晶格结构12
图2  有两相并置和相边界运动的收缩核模型示意图20
图3  LiFePO4和FePO4相之间的界面区域示意图21
图4  LiFePO4晶体中锂脱嵌机理的多米诺模型示意图22
图5  LiFePO4在不同电化学循环条件下的原位XRD图23
图6  LiFePO4隔行脱锂的ABF像24
图7  软X射线吸收光谱图25
图8  时间分辨XRD测试和LixFePO4的电位变化曲线示意图26
图9  具有二阶结构LiFePO4的脱锂双界面结构模型27
图10  不同晶面的有利生长单元及它们稳定组合的能量计算40
图11  LiFePO4(1.0)和LiFePO4(0.5)的FESEM图以及相关的EDAX光谱图59
图12  LiFePO4(1.0)和LiFePO4(0.5)的TEM及HRTEM图像59
图13  Mg掺杂和未掺杂的LiFePO4/C复合材料的电化学性能图65
Doped ion Resolve resolution Electrochemical performance Reference
Na+ Preparation of Li1?xNaxFePO4 composites byhigh temperature solid phase method Li0.9Na0.1FePO4 composites exhibit the best electrochemical performance.Doping Na not only reduces the charge transfer resistance, but also increasesthe diffusion rate of lithium-ions. 85
Sn2+ Preparation of LiFe1?xSnxPO4 composites bysol-gel method The initial discharge specific capacity of LiFe0.97Sn0.03PO4 composite materialis 158 mAh·g?1 at 0.5C, the discharge capacity at higher 5C and 10Cmagnifications is 146 and 128 mAh·g?1, respectively. 86
Zn2+ Preparation of Zn-doped composites by usingwith FeSO4·7H2O, H2C2O4, Li2CO3 andNH4H2PO4 as the main raw materials At a current density of 0.3 mA·cm?2, the doping composite exhibits a higherspecific capacity of about 138 mAh·g?1 with higher coulombic efficiency. 87
Cu2+ Preparation of Li1+xFe1?yCuyPO4 composites by solid phase method at hightemperature The initial discharge specific capacity of Li1.05Fe0.997Cu0.003PO4 s 145mAh·g?1, the capacity retention rate is more than 95% during the cycle. 88
Mg2+ Preparation of Mg-doped LiFePO4/Ccomposites by carbide reduction withrheological phase The as-prepared LiFePO4 sample delivered a discharge capacity of 166mAh·g?1 at 0.1C and presented an excellent rate capacity of 148 mAh·g?1 anda high potential plateau of 3.32 V at 1C. Approximately 100% capacityretention was maintained after 150 cycles at 1C or 200 cycles at 10C. 89
Ni2+ Preparation of LiNixFe1?xPO4/C compositesby solid phase method at high temperature The LiNi0.02Fe0.98PO4/C exhibits the excellent cycling performance at a rateof 1 C, which delivered an initial discharge capacity of 141.0 mAh·g?1 withcapacity retention of 98.4% after 50 cycles. 90
Ce3+ Preparation of LiFe1?xCexPO4/C compositesby solid phase method at high temperature The initial discharge specific capacities of LiFe0.9Ce0.1PO4/C composites at0.1C and 5C are 160.1 and 136.7 mAh·g?1, respectively. 91
Cr3+ Preparation of LiFe0.95Cr0.05PO4/C compositesby solid state microwave method The initial discharge specific capacity of LiFe0.95Cr0.05PO4/C composite at0.1C is 157.7 mAh·g?1 and the capacity retention rate after the 150th cycle ismore than 95%. 92
Ru3+ The composite materials are prepared byusing CH3COOLi, FeC2O4·2H2O, NH4H2PO4and RuCl3 as raw materials and polyethyleneglycol as carbon source The initial discharge specific capacities of LiFe0.99Ru0.01PO4/C composites at1C, 3C and 5C magnitudes are 142, 127 and 101 mAh·g?1, respectively. 93
V4+ Preparation of V-doped LiFePO4/Ccomposites by pilot hydrothermal method The initial discharge specific capacity of LiFe0.95V0.05PO4 composite atdischarge rate of 1500 mA·g?1 is as high as 119 mAh·g?1. 94
Ti4+ The composites doped with Ti are preparedby using Li2CO3, FeSO4·7H2O, H2C2O4, H3PO4, H2O2 and Ti(SO4)2 as raw materials The electrochemical properties of the composites doped with 3% Ti are thebest, the initial discharge specific capacity of composites at 1C and 2C rateare 130 and 124 mAh·g?1, respectively. 95
Mn4+ Preparation of LiFe1?xMnxPO4/C composites bymicrowave assisted solid state reaction The initial discharge specific capacity of LiFe0.99Mn0.01PO4/C composites is163.2 mAh·g?1 at 0.1C with excellnet cycle performance. 96
Nb5+ Preparation of Nb-doped LiFePO4/Ccomposites by pilot scale continuoushydrothermal method The initial discharge specific capacity of the composite with 1% Nb doped at10C is 110 mAh·g?1. 97
Ta5+ Preparation of Ta-doped LiFePO4/Ccomposites by sol-gel method The discharge capacity of Li0.99Ta0.01FePO4/C composites is 155.5mAh·g?1 for the second cycle at 0.33 C and the capacity retention rate ofthe composite is reduced to 120 Ω. The tap density increased by 0.312g·cm?3. 98
Mo6+ Preparation of LiFe1?xMoxPO4/C compositesby microwave assisted solid state reaction LiFe0.95Mo0.05PO4/C exhibits maximum capacity of 169.7 mAh·g?1 at0.1C. After 50 cycles at 0.5C, the discharge capacity of the sample dropsfrom 165.2 mAh·g?1 to 163.3 mAh·g?1 with more than 98% retention ofcapacity. Even at a rate of 10C, a reversible capacity of 112.3 mAh·g?1can still be achieved. 99
Na+, Ti4+ Preparation of Li1?xNaxFe1?xTixPO4/Ccomposites by solid phase method at hightemperature The initial discharge capacity of Li0.97Na0.03Fe0.97Ti0.03PO4/Cs 151.0mAh·g?1 with the capacity retention ratio of 99.3% after 100 cycles at1C. Especially, it still showed a high discharge capacity of over 97.3mAh·g?1 even at a high rate of 20C. 100
Ni2+, Mn4+ LiFePO4/C composites doped with Ni andMn are prepared by solid phase method athigh temperature The initial discharge specific capacity of LiNi0.02Mn0.03Fe0.95PO4/Ccomposites at 0.1C is 164.3 mAh·g?1, it also exhibits excellent cyclicstability with capacity retention of 98.7% cycled at 1C after 100 cycles. 90
Sm3+, Eu3+, Yb3+ Preparation of LiFe0.95M0.05PO4/Composites by hydrothermal method The first discharge capacity of the as-prepared LiFe0.95M0.05PO4/C are153.602, 144.002 and 160.702 mAh·g?1 at 0.2C, respectively. Thespecific surface area of LiFe0.95M0.05PO4/C are 25.202, 21.502 and25.402 m2·g?1, respectively. 101
Al3+, Ti4+, Zr4+, W6+ Preparation of LiFe1?xMxPO4 ompositesby solid phase method at hightemperature At low rates (C/10 to C/30), the initial discharge specific capacity of thecomposites is about 150 mAh·g?1, which is close to 90% of thetheoretical value. 102
F- The LiFe(PO4)1?xF3x/C composites dopedwith F are prepared by usingFePO4·4H2O, LiF, Fe, Li3PO4·1/2H2O asraw materials The initial discharge specific capacities of LiFe(PO4)0.9F0.3/C compositesat 0.1C, 5C and 10C are 151.9 mAh·g?1, 119.4 mAh·g?1 and 109.8mAh·g?1. At a high temperature of 55 ℃ the capacity is only 2.5% after200 cycles at 1C and the capacity retention rate is as high as 91.8% after300 cycles. 103
Cl- Preparation of Cl-doped LiFePO4/Ccomposites by carbothermic reduction The initial discharge specific capacities of the composites at 0.1C and20C are 162 mAh·g?1 and 90 mAh·g?1, respectively. The conductivity isincreased to 1.01 × 10?2 S·cm?1 and the diffusion rate of lithium-ionsincreased to 1.05 × 10?9 cm2·s?1. 104
表1  掺杂不同离子对LiFePO4的改性作用
Sample Rs Rct I0/(mA·g?1)
25 ℃ -12 ℃ -20 ℃ 25 ℃ -12 ℃ -20 ℃ 25 ℃ -12 ℃ -20 ℃
LFP9.213.115.2288.005064.05290.061.93.12.9
LFP/C?LV13.822.022.6142.102988.04512.0125.64.73.1
表2  不同温度下电化学阻抗和交换电流密度的结果134
图14  粒径对LiFePO4材料的放电比容量的影响146
1 Padhi A. K. ; Nanjundaswamy K. S. ; Goodenough J. B. J. Electrochem. Soc. 1997, 144 (4), 1188.
doi: 10.1149/1.1837571
2 Padhi A. K. ; Nanjundaswamy K. S. ; Masquelier C. ; Okada S. ; Goodenough J. B. J. Electrochem. Soc. 1997, 144 (5), 1609.
doi: 10.1149/1.1837649
3 Bi Z. Y. ; Zhang X. D. ; He W. ; Min D. D. ; Zhang W. S. RSC Adv. 2013, 3 (43), 19744.
doi: 10.1039/C3RA42601G
4 Dimesso L. ; F?rster C. ; Jaegermann W. ; Khanderi J. P. ; Tempel H. ; Popp A. ; Engstler J. ; Schneider J. J. ; Sarapulova A. ; Mikhailova D. ; Schmitt L. A. ; Oswaldc S. ; Ehrenbergd H. Chem. Soc. Rev. 2012, 41 (15), 5068.
doi: 10.1039/C2CS15320C
5 Sun X. F ; Xu Y. L. ; Liu Y. H. ; Li L. Acta Phys. -Chim. Sin. 2012, 28 (12), 2885.
doi: 10.3866/PKU.WHXB201209271
孙孝飞; 徐友龙; 刘养浩; 李璐. 物理化学学报, 2012, 28 (12), 2885.
doi: 10.3866/PKU.WHXB201209271
6 Zhang Y. ; Huo Q. Y. ; Du P. P. ; Wang L. Z. ; Zhang A. Q. ; Song Y. H. ; Lv Y. ; Li G. Y. Synth. Met. 2012, 162 (13), 1315.
doi: 10.1016/j.synthmet.2012.04.025
7 Lu L. G. ; Han X. B. ; Li J. Q. ; Hua J. F. ; Ouyang M. G. J. Power Sources 20131, 226 (3), 272.
doi: 10.1016/j.jpowsour.2012.10.060
8 Amin R. ; Balaya P. ; Maier J. Electrochem. Solid-State Lett. 2007, 10 (1), A13.
doi: 10.1149/1.2388240
9 Morgan D. ; Ven A. V. D. ; Ceder G. Electrochem. Solid-State Lett. 2004, 7 (2), A30.
doi: 10.1149/1.1633511
10 Chung S. Y. ; Chiang Y. M. Electrochem. Solid-State Lett. 2003, 6 (12), A278.
doi: 10.1149/1.1621289
11 Xu Y. N. ; Chung S. Y. ; Bloking J. T. ; Chiang Y. M. ; Ching W. Y. Electrochem. Solid-State Lett. 2004, 7 (6), A131.
doi: 10.1149/1.1703470
12 Jugovi? D. ; Uskokovi? D. J.Power Sources 2009, 190 (2), 538.
doi: 10.1016/j.jpowsour.2009.01.074
13 Andersson A. S. ; Thomas J. O. ; Kalska B. ; H?ggstr?m L. Electrochem. Solid-State Lett. 2000, 3 (2), 66.
doi: 10.1149/1.1390960
14 Lv W. Q. ; Niu Y. H. ; Jian X. ; Zhang K. H. L. ; Wang W. ; Zhao J. Y. ; Wang Z. M. ; Yang W. Q. ; He W. D. Appl. Phys. Lett. 2016, 108 (8), 1188.
doi: 10.1063/1.4942849
15 Abdellahi A. ; Akyildiz O. ; Malik R. ; Thorntonc K. ; Ceder G. J. Mater. Chem. A. 2016, 4 (15), 5436.
doi: 10.1039/C5TA10498J
16 Masrour R. ; Hlil E. K. ; Obbade S. ; Rossignol C. Solid State Ionics 2016, 289, 214.
doi: 10.1016/j.ssi.2016.03.016
17 Gong C. L. ; Xue Z. G. ; Wen S. ; Ye Y. S. ; Xie X. L. J. Power Sources 2016, 318 (30), 93.
doi: 10.1016/j.jpowsour.2016.04.008
18 Bruce P. G. Chem. Commun. 1997, 19 (19), 1817.
doi: 10.1039/A608551B
19 Yuan L. X ; Wang Z. H. ; Zhang W. X. ; Hu X. L. ; Chen J.Tao. ; Huang Y. H. ; Goodenough J. B. Energy Environ. Sci. 2011, 4 (2), 269.
doi: 10.1039/C0EE00029A
20 Srinivasan V. ; Newman J. J. Electrochem. Soc. 2004, 151 (10), A1517.
doi: 10.1149/1.1785012
21 Laffont L. ; Delacourt C. ; Gibot P. ; Wu M. Y. ; Kooyman P. ; Masquelier C. ; Tarascon J. M. Chem. Mater. 2006, 18 (23), 5520.
doi: 10.1021/cm0617182
22 Delmas C. ; Maccario M. ; Croguennec L. ; Cras F. L. ; Weill F. Nat. Mater. 2008, 7 (8), 665.
doi: 10.1038/nmat2230
23 Liu H. ; Strobridge F. C. ; Borkiewicz O. J. ; Wiaderek K. M. ; Chapman K. W. ; Chupas P. J. ; Grey C. P. Science 2014, 344 (6191), 1252817.
doi: 10.1126/science.1252817
24 Gu L. ; Zhu C. B. ; Li H. ; Yu Y. ; Li C. L. ; Tsukimoto S. ; Maier J. ; Ikuhara Y. C. J. Am. Chem. Soc. 2011, 133 (13), 4661.
doi: 10.1021/ja109412x
25 Liu X. S. ; Liu J. ; Qiao R. M. ; Yu Y. ; Li H. ; Suo L. M. ; Hu Y. S. ; Chuang Y. D. ; Shu G. J. ; Chou F. C. ; Weng T. C. ; Nordlund D. ; Sokaras D. ; Wang Y. J. ; Lin H. ; Barbiellini B. ; Bansil A. ; Song X. Y. ; Liu Z. ; Yan S. S. ; Liu G. ; Qiao S. ; Richardson T. J. ; Prendergast D. ; Hussain Z. ; Groot F. M. F.D. ; Yang W. L. J. Am. Chem. Soc. 2012, 134 (33), 13708.
doi: 10.1021/ja303225e
26 Orikasa Y. ; Maeda T. ; Koyama Y. ; Murayama H. ; Fukuda K. ; Tanida H. ; Arai H. ; Matsubara E. ; Uchimoto Y. ; Ogumi Z. J. Am. Chem. Soc. 2013, 135 (15), 5497.
doi: 10.1021/ja312527x
27 Sun Y. ; Lu X. ; Xiao R. J. ; Li H. ; Huang X. J. Chem. Mater. 2012, 24 (24), 4693.
doi: 10.1021/cm3028324
28 Xiao D. D. ; Gu L. Sci. Sin. Chim. 2014, 3 (44), 295.
doi: 10.1360/032013-269
肖东东; 谷林. 中国科学:化学, 2014, 3 (44), 295.
doi: 10.1360/032013-269
29 Cui Q. ; Luo C. H. ; Li G. ; Wang G. X. ; Yan K. P. Ind. Eng. Chem. Res. 2016, 55 (26), 7069.
doi: 10.1021/acs.iecr.6b00023
30 Churikov A. ; Gribov A. ; Bobyl A. ; Kamzin A. ; Terukov. E. Ionics 2014, 20 (1), 1.
doi: 10.1007/s11581-013-0948-4
31 Ravet N. ; Gauthier M. ; Zaghib K. ; Goodenough J. B. ; Mauger A. ; Gendron F. ; Julien C. M. Chem. Mater. 2007, 19 (10), 2595.
doi: 10.1021/cm070485r
32 Xiao Z. W. ; Zhang Y. J. ; Hu G. R. J. Cent. South Univ. 2015, 22 (6), 2043.
doi: 10.1007/s11771-015-2727-z
33 Xiao Z. W. ; Zhang Y. J. ; Hu G. R. J. Cent. South Univ. 2015, 22 (12), 4507.
doi: 10.1007/s11771-015-2999-3
34 Xiao Z. ; Zhang Y. J. ; Hu G. R. J. Appl. Electrochem. 2015, 45 (3), 225.
doi: 10.1007/s10800-014-0780-1
35 Weng S. Y. ; Yang Z. H. ; Wang Q. ; Zhang J. ; Zhang W. X. Ionics 2013, 19 (2), 235.
doi: 10.1007/s11581-012-0746-4
36 Hu Y. M. ; Wang G. H. ; Liu C. Z. ; Chou S. L. ; Zhu M. Y. ; Jin H. M. ; Li W. X. ; Li Y. Ceram. Int. 2016, 42 (9), 11422.
doi: 10.1016/j.ceramint.2016.04.075
37 Dhindsa K. S. ; Kumar A. ; Nazri G. A. ; Naik V. M. ; Garg V.K. ; Oliveira A. C. ; Vaishnava P. P. ; Zhou Z. X. ; Naik R. J. Solid State Electrochem. 2016, 20 (8), 2275.
doi: 10.1007/s10008-016-3239-y
38 Reklaitis J. ; Davidonis R. ; Dindune A. ; Valdniece D. ; Jasulaitien? V. ; Baltrūnas D. Phys. Status Solidi B 2016, 253 (11), 2283.
doi: 10.1002/pssb.201600028
39 Ziolkowska D. A. ; Jasinski J. B. ; Hamankiewicz B. ; Korona K. P. ; Wu S. H. Czerwinski. Cryst. Growth Des. 2016, 16 (9), 5006.
doi: 10.1021/acs.cgd.6b00575
40 Xu C. H. ; Wang L. ; He X. M. ; Luo J. ; Shang Y. M. ; Wang J.L. Int. J. Electrochem. Sci. 2016, 11 (2), 1558.
41 Zhao H. C. ; Song Y. ; Guo X. D. ; Zhong B. H. ; Dong J. ; Liu H. Acta Phys. -Chim. Sin. 2011, 27 (10), 2347.
doi: 10.3866/PKU.WHXB20110905
赵浩川; 宋杨; 郭孝东; 钟本和; 董静; 刘恒. 物理化学学报, 2011, 27 (10), 2347.
doi: 10.3866/PKU.WHXB20110905
42 Toprakci O. ; Ji L. W. ; Lin Z. ; Toprakci H. A. K. ; Zhang X.W. J. Power Sources 2011, 04, 031.
doi: 10.1016/j.jpowsour.2011.04.031
43 Doeff M. M. ; Wilcox J. D. ; Yu R. ; Aumentado A. ; Marcinek M. ; Kostecki R. J. Solid State Electrochem. 2008, 12 (7), 995.
doi: 10.1007/s10008-007-0419-9
44 Wang M. ; Xue Y. H. ; Zhang K. L. ; Zhang Y. X. Electrochim. Acta 2011, 56 (11), 4294.
doi: 10.1016/j.electacta.2011.01.074
45 Akiya N. ; Savage P. E. Chem. Rev. 2002, 102 (8), 2725.
doi: 10.1021/cr000668w
46 Xi X. L. ; Chen G. L. ; Nie Z. R. ; He S. ; Pi X. ; Zhu X. G. ; Zhu J. J. ; Zuo T. Y. J. Alloy. Compd. 2010, 497 (1), 377.
doi: 10.1016/j.jallcom.2010.03.078
47 Needham S. A. ; Calka A. ; Wang G.X. ; Mosbah A. ; Liu H. K. Electrochem. Commun. 2006, 8 (3), 434.
doi: 10.1016/j.elecom.2005.12.011
48 Gu N. Y. ; Wang H. ; Li Y. ; Ma H. Y. ; He X. H. ; Yang Z. Y. J. Solid State Electrochem. 2014, 18 (3), 771.
doi: 10.1007/s10008-013-2319-5
49 Xu J. ; Chen G. ; Xie C. D. ; Li X. ; Zhou Y. H. Solid State Commun. 2008, 147 (11), 443.
doi: 10.1016/j.ssc.2008.07.013
50 Doan T. N. L. ; Bakenov Z. ; Taniguchi I. Adv. Powder Technol. 2010, 21 (2), 187.
doi: 10.1016/j.apt.2009.10.016
51 Hwang B. J. ; Hsu K. F. ; Hu S. K. ; Cheng M. Y. ; Chou T. C. ; Tsay S. Y. ; Santhanamd R. J. Power Sources 2009, 194 (1), 515.
doi: 10.1016/j.jpowsour.2009.05.006
52 Hu Y. K. ; Ren J. X. ; Wei Q. L. ; Guo X. D. ; Tang Y. ; Zhong B. H. ; Liu H. Acta Phys. -Chim. Sin. 2014, 30 (1), 75.
doi: 10.3866/PKU.WHXB201311261
胡有坤; 任建新; 魏巧玲; 郭孝东; 唐艳; 钟本和; 刘恒. 物理化学学报, 2014, 30 (1), 75.
doi: 10.3866/PKU.WHXB201311261
53 Palomares V. ; Go?i A. ; Muro I. G. D. ; Meatza I. D. ; Bengoechea Miguel. ; Miguel O. ; Rojoa T. J. Power Sources 2007, 171 (2), 879.
doi: 10.1016/j.jpowsour.2007.06.161
54 Zhu C. ; Yu Y. ; Gu L. ; Weichert K. ; Maier J. Angew. Chem. Int. Ed. 2011, 50 (28), 6278.
doi: 10.1002/anie.201005428
55 Shao D. Q. ; Wang J. X. ; Dong X. T. ; Yu W. S. ; Liu G. X. ; Zhang F. F. ; Wang L. M. J. Mater. Sci. -Mater. Electron. 2014, 25 (2), 1040.
doi: 10.1007/s10854-013-1684-2
56 Qiu Y. J. ; Geng Y. H. ; Li N. N. ; Liu X. L. ; Zuo X. B. Mater. Chem. Phys. 2014, 144 (3), 226.
doi: 10.1016/j.matchemphys.2013.12.027
57 Zhang C. H. ; Liang Y. Z. ; Yao L. ; Qiu Y. P. J. Alloy. Compd. 2015, 627 (8), 91.
doi: 10.1016/j.jallcom.2014.12.067
58 Patil K. C. ; Aruna S. T. ; Ekambaram S. Curr. Opin. Solid State Mater. Sci. 1997, 2 (2), 158.
doi: 10.1016/S1359-0286(97)80060-5
59 Sehrawat R. ; Sil A. Ionics 2015, 21 (3), 673.
doi: 10.1007/s11581-014-1229-6
60 Mohan E. H. ; Siddhartha V. Aims Mater. Sci. 2014, 1 (4), 191.
doi: 10.3934/matersci.2014.4.191
61 Vujkovi? M. ; Jugovi? D. ; Mitri? M. ; Stojkovic I. ; Cvjeti?anin N. ; Mentus Slavko. Electrochim. Acta 2013, 109 (11), 835.
doi: 10.1016/j.electacta.2013.07.219
62 Chu D. B. ; Li Y. ; Song Q. ; Zhou Y. Acta Phys. -Chim. Sin. 2011, 27 (8), 1863.
doi: 10.3866/PKU.WHXB20110807
褚道葆; 李艳; 宋奇; 周莹. 物理化学学报, 2011, 27 (8), 1863.
doi: 10.3866/PKU.WHXB20110807
63 Wu T. ; Ma X. ; Liu X. ; Zeng G. ; Xiao W. Adv. Funct. Mater. 2016, 30 (2), A70.
doi: 10.1179/17535557A15Y.000000011
64 Tang H. ; Xu J. Mater. Sci. Eng., B 2013, 178 (20), 1503.
doi: 10.1016/j.mseb.2013.08.014
65 Li Y. C. ; Geng G. G. ; Hao J. H. ; Zhang J. M. ; Yang C. C. ; Li B. J. Electrochim. Acta 2015, 186 (20), 157.
doi: 10.1016/j.electacta.2015.10.121
66 Teja A. S. ; Eckert C. A. Ind. Eng. Chem. Res. 2000, 39 (12), 4442.
doi: 10.1021/ie000915m
67 Hauthal W H. Chemosphere 2001, 43 (1), 123.
doi: 10.1016/S0045-6535(00)00332-5
68 Lee J. ; Teja A. S. Mater. Lett. 2006, 60 (17), 2105.
doi: 10.1016/j.matlet.2005.12.083
69 Zhang Y. J. ; Yang Y. F. ; Wang X. Y. ; Li S. S. Chin. J. Chem. Eng. 2014, 22 (2), 234.
doi: 10.1016/S1004-9541(14)60051-3
70 Rangappa D. ; Sone K. ; Ichihara M. ; Kudo T. ; Honma I. Chem. Commun. 2010, 46 (40), 7548.
doi: 10.1039/c0cc03034a
71 Xie M. ; Zhang X. X. ; Wang Y. Z. ; Deng S. X. ; Wang H. ; Liu J. B. ; Yan H. ; Laakso J. ; Lev?nen E. Electrochim. Acta 2013, 94 (4), 16.
doi: 10.1016/j.electacta.2013.01.131
72 Xie M. ; Zhang X. X. ; Deng S. X. ; Wang Y. Z. ; Wang H. ; Liu J. B. ; Yan H. ; Laakso J. ; Lev?nen E. RSC Adv. 2013, 3 (31), 12786.
doi: 10.1039/C3RA41133H
73 Wang Y. G. ; He P. ; Zhou H. S. Energy Environ. Sci. 2011, 4 (3), 805.
doi: 10.1039/c0ee00176g
74 Zhang D. Y. ; Zhang P. X. ; Lin M. C. ; Liu K. ; Yuan Q. H. ; Xu Q. M. ; Luo Z. K. ; Ren X. Z. J. Inorg. Mater. 2011, 26 (3), 265.
doi: 10.3724/SP.J.1077.2011.00265
张冬云; 张培新; 林木崇; 刘琨; 袁秋华; 许启明; 罗仲宽; 任祥忠. 无机材料学报, 2011, 26 (3), 265.
doi: 10.3724/SP.J.1077.2011.00265
75 Ni J. F. ; Zhou H ; H . ; Chen J. T. ; Su G. Y. Acta Phys. -Chim. Sin. 2004, 20 (6), 582.
doi: 10.3866/PKU.WHXB20040606
倪江锋; 周恒辉; 陈继涛; 苏光耀. 物理化学学报, 2004, 20 (6), 582.
doi: 10.3866/PKU.WHXB20040606
76 Chen Y. ; Wang Z. L. ; Yu C. Y. ; Xia D. G. ; Wu Z. Y. Acta Phys. -Chim. Sin. 2008, 24 (8), 1498.
doi: 10.3866/PKU.WHXB20080829
陈宇; 王忠丽; 于春洋; 夏定国; 吴自玉. 物理化学学报, 2008, 24 (8), 1498.
doi: 10.3866/PKU.WHXB20080829
77 Mi C. H. ; Cao G. S. ; Zhao X. B. Chin. J. Inorg. Chem. 2005, 21 (4), 556.
doi: 10.3321/j.issn:1001-4861.2005.04.022
米常焕; 曹高劭; 赵新兵. 无机化学学报, 2005, 21 (4), 556.
doi: 10.3321/j.issn:1001-4861.2005.04.022
78 Yu F. ; Zhang J. J. ; Yang Y. F. ; Song G. Z. Chin. J. Inorg. Chem. 2009, 25 (1), 42.
doi: 10.3321/j.issn:1001-4861.2009.01.008
于锋; 张敬杰; 杨岩峰; 宋广智. 无机化学学报, 2009, 25 (1), 42.
doi: 10.3321/j.issn:1001-4861.2009.01.008
79 Mi C. H. ; Cao Y. X. ; Zhang X. G. ; Zhao X. B. ; Li H. L. Powder Technol. 2008, 181 (3), 301.
doi: 10.1016/j.powtec.2007.05.017
80 He W. ; Wei C. L. ; Zhang X. D. ; Wang Y. Y. ; Liu Q. Z. ; Shen J. X. ; Wang L. Z. ; YuaZe Y. Z. Electrochim. Acta 2016, 219 (20), 682.
doi: 10.1016/j.electacta.2016.10.047
81 Kobayashi G. ; Nishimura S. I. ; Park M. S. ; Kanno R. ; Yashima M. ; Ida T. ; Yamada A. Adv. Funct. Mater. 2009, 19 (3), 395.
doi: 10.1002/adfm.200801522
82 Qian J. F. ; Zhou M. ; Cao Y. L. ; Ai X. P. ; Yang H. X. J. Phys. Chem. C 2010, 114 (8), 3477.
doi: 10.1021/jp912102k
83 Wang D. Y. ; Li H. ; Shi S. Q. ; Huang X. J. ; Chen L. Q. Electrochim. Acta 2005, 50 (14), 2955.
doi: 10.1016/j.electacta.2004.11.045
84 Hong J. ; Wang X. L. ; Wang Q. ; Omenya F. ; Chernova N. A. ; Whittingham M. S. ; Graetz J. G. J. Phys. Chem. C 2012, 116 (39), 20787.
doi: 10.1021/jp306936t
85 Zhu Y. R. ; Zhang R. ; Deng L. ; Yi T. F. ; Ye M. F. ; Yao J. H. ; Dai C. S. Metall. Mater. Trans. E 2015, 2 (1), 33.
doi: 10.1007/s40553-014-0041-6
86 Ma J. ; Li B. H. ; Du H. D. ; Xu C. J. ; Kang F. Y. J. Solid State Electrochem. 2012, 16 (1), 1.
doi: 10.1007/s10008-010-1263-x
87 Ni J. F. ; Zhou H. H. ; Chen J. T. ; Zhang X. X. Mater. Lett. 2005, 59 (18), 2361.
doi: 10.1016/j.matlet.2005.02.080
88 Lee S. B. ; Cho S. H. ; Heo J. B. ; Aravindan V. ; Kim H. S. ; Lee Y. S. J. Alloy. Compd. 2009, 488 (1), 380.
doi: 10.1016/j.jallcom.2009.08.144
89 Li Y. C. ; Hao J. H. ; Geng G. W. ; Wang Y. F. ; Shang X. K. ; Yang C. C. ; Li B. J. RSC Adv. 2015, 5 (84), 68681.
doi: 10.1039/C5RA11680E
90 Yuan H. ; Wang X. Y. ; Wu Q. ; Shu H. B. ; Yang X. K. J. Alloy. Compd. 2016, 675 (5), 187.
doi: 10.1016/j.jallcom.2016.03.065
91 Zhao N. N. ; Li Y. S. ; Zhi X. K. ; Wang L. ; Zhao X. X. ; Wang Y. M. ; Liang G. C. J. Rare Earths 2016, 34 (2), 174.
doi: 10.1016/S1002-0721(16)60011-X
92 Naik A. ; Zhou J. ; Gao C. ; Liu G. Z. ; Wang L. Mater. Sci.-Poland 2016, 33 (4), 742.
doi: 10.1515/msp-2015-0087
93 Wang Y. R. ; Yang Y. F. ; Hu X. ; Yang Y. B. ; Shao H. X. J. Alloy. Compd. 2009, 481 (1), 590.
doi: 10.1016/j.jallcom.2009.03.033
94 Johnson I. D. ; Lübke M. ; Wu O. Y. ; Makwana N. M. ; Smales G. J. ; Islam H. U. ; Dedigama R. Y. ; Gruar R. I. ; Tighe C. J. ; Scanlon D. O. ; Corà F. ; Brett D. J. L. ; Shearing P. R. ; Darr J. A. J. Power Sources 2016, 302 (20), 410.
doi: 10.1016/j.jpowsour.2015.10.068
95 Li L. J. ; Li X. H. ; Wang Z. X. ; Wu L. ; Zheng J. C. ; Guo H.J. J. Phys. Chem. Solids 2009, 70 (1), 238.
doi: 10.1016/j.jpcs.2008.10.012
96 Naik A. ; Zhou J. ; Gao C. ; Liu G. Z. ; Wang L. J. Energy Inst. 2016, 89 (1), 21.
doi: 10.1016/j.joei.2015.01.013
97 Johnson I. D. ; Blagovidova E. ; Dingwall P. A. ; Brett D. J. L. ; Shearing P. R. ; Darr J. A. J. Power Sources 2016, 326 (15), 476.
doi: 10.1016/j.jpowsour.2016.06.128
98 Yang S. T. ; Liu Y. X. ; Yin Y. H. ; Wang H. ; Wang T. Chin. J. Inorg. Chem. 2007, 23 (7), 1165.
doi: 10.3321/j.issn:1001-4861.2007.07.007
杨书廷; 刘玉霞; 尹艳红; 王辉; 王涛. 无机化学学报, 2007, 23 (7), 1165.
doi: 10.3321/j.issn:1001-4861.2007.07.007
99 Naik A. ; Ponnappa S. C. Dalton Trans. 2016, 45 (19), 8021.
doi: 10.1039/C6DT00331A
100 Shu H. B. ; Wang X. Y. ; Wen W. C. ; Liang Q. Q. ; Yang X.K. ; Wei Q. L. ; Hu B. A. ; Liu L. ; Liu X. ; Song Y. F. ; Zho M. ; Bai Y. S. ; Jiang L. L. ; Chen M. F. ; Yang S. Y. ; Tan J. L. ; Liao Y. Q. ; Jiang H. M. Electrochim. Acta 2013, 89 (1), 479.
doi: 10.1016/j.electacta.2012.11.081
101 Xu Y. ; Zhao M. H. ; Sun B. Solid State Ionics 2016, 291, 14.
doi: 10.1016/j.ssi.2016.04.008
102 Chung S. Y. ; Bloking J. T. ; Chiang Y. M. Nat. Mater 2002, 1 (2), 123.
doi: 10.1038/nmat732
103 Liao X. Z. ; He Y. S. ; Ma Z. F. ; Zhang X. M. ; Wang L. J. Power Sources 2007, 174 (2), 720.
doi: 10.1016/j.jpowsour.2007.06.146
104 Sun C. S. ; Zhang Y. ; Zhang X. J. ; Zhou Z. J. Power Sources 2010, 195 (11), 3680.
doi: 10.1016/j.jpowsour.2009.12.074
105 Li H. ; Wang Z. X. ; Chen L. Q. ; Huang X.J. Adv. Mater. 2009, 21 (45), 4593.
doi: 10.1002/adma.200901710
106 Abbate M. ; Lala S. M. ; Montoro L. A. ; Rosolenb J. M. Electrochem. Solid-State Lett. 2005, 8 (6), A288.
doi: 10.1149/1.1895286
107 Lu J. B. ; Tang Z. L. ; Zhang Z. T. ; Jin Y. Z. Acta Phys. -Chim. Sin. 2005, 21 (3), 319.
doi: 10.3866/PKU.WHXB20050319
卢俊彪; 唐子龙; 张中太; 金永拄. 物理化学学报, 2005, 21 (3), 319.
doi: 10.3866/PKU.WHXB20050319
108 Yu W. ; Ou G. ; Qi L. H. ; Wu H. J. Am. Ceram. Soc. 2016, 99 (10), 3214.
doi: 10.1111/jace.14426
109 Zaghib K. ; Mauger A. ; Goodenough J. B. ; Gendron F. ; Julien C. M. Chem. Mater. 2007, 19 (15), 3740.
doi: 10.1021/cm0710296
110 Harrison K. L. ; Bridges C. A. ; Paranthaman M. P. ; Segre C.U. ; Katsoudas J. ; Maroni V. A. ; Idrobo J. C. ; Goodenough J.B. ; Manthiram A. Chem. Mater. 2013, 25 (5), 768.
doi: 10.1021/cm303932m
111 Herle P. S. ; Ellis B. ; Coombs N. ; Nazar L. F. Nat. Mater. 2004, 3 (3), 147.
doi: 10.1038/nmat1063
112 Delacourt C. ; Wurm C. ; Laffont L. ; Leriche J. B. ; Masquelier C. Solid State Ionics 2006, 177, 333.
doi: 10.1016/j.ssi.2005.11.003
113 Park K. S. ; Xiao P. H. ; Kim S. Y. ; Dylla A. ; Choi Y. M. ; Henkelman G. ; Stevenson K. J. ; Goodenough J. B. Chem. Mater. 2012, 24 (16), 3212.
doi: 10.1021/cm301569m
114 Ravet N. ; Goodenough J. B. ; Besner S. ; Simoneau M. ; Hovington P. ; Armand M. J. Electrochem. Soc. Abstr. 1999, 99-2, 172.
115 Sun L. N. ; Deng Q. W. ; Fang B. ; Li Y. L. ; Deng L. B. ; Yang B. ; Ren X. Z. ; Zhang P. X. CrystEngComm 2016, 18 (39), 7537.
doi: 10.1039/C6CE01681B
116 Wang K. ; Cai R. ; Yuan T. ; Yu X. ; Ran R. ; Shao Z. P. Electrochim. Acta 2009, 54 (10), 2861.
doi: 10.1016/j.electacta.2008.11.012
117 Liu X. H. ; Zhao Z. W. Powder Technol. 2010, 197 (3), 309.
doi: 10.1016/j.powtec.2009.09.019
118 Shin H. C. ; Cho W. I. ; Jang H. J. Power Sources 2006, 159 (2), 1383.
doi: 10.1016/j.jpowsour.2005.12.043
119 Sun C. ; Yan L. M. ; Yue B. H. Acta Phys. -Chim. Sin. 2013, 29 (8), 1666.
doi: 10.3866/PKU.WHXB201304232
孙超; 严六明; 岳宝华. 物理化学学报, 2013, 29 (8), 1666.
doi: 10.3866/PKU.WHXB201304232
120 Ni J. F. ; Morishita M. ; Kawabe Y. ; Watada M. ; Takeichi N. ; Sakai T. J. Power Sources. 2010, 195 (9), 2877.
doi: 10.1016/j.jpowsour.2009.11.017
121 Gaberscek M. ; Dominko R. ; Bele M. ; Remskar M. ; Hanzel D. ; Jamnik J. Solid State Ionics 2005, 176, 1801.
doi: 10.1016/j.ssi.2005.04.034
122 Zhang H. Y. ; Chen Y. T. ; Zheng C. C. ; Zhang D. F. ; He C. H. Ionics 2015, 21 (7), 1813.
doi: 10.1007/s11581-014-1354-2
123 Yu H. M. ; Zheng W. ; Cao G. S. ; Zhao X. B. Acta Phys. -Chim. Sin. 2009, 25 (11), 2186.
doi: 10.3866/PKU.WHXB20091113
余红明; 郑威; 曹高劭; 赵新兵. 物理化学学报, 2009, 25 (11), 2186.
doi: 10.3866/PKU.WHXB20091113
124 Kuwahara A. ; Suzuki S. ; Miyayama M. Ceram. Int. 2008, 34 (4), 863.
doi: 10.1016/j.ceramint.2007.09.037
125 Du Y. H. ; Tang Y. F. ; Huang F. Q. ; Chang C. k. RSC Adv. 2016, 6 (57), 52279.
doi: 10.1039/C6RA08937B
126 Li Q. R. ; Zhou Z. F. ; Liu S. S. ; Zhang X. X. Ionics 2016, 22 (7), 1027.
doi: 10.1007/s11581-016-1636-y
127 Lu J. B. ; Le B. ; Tang Z. L. ; Zhang Z. T. ; Li J. R. ; Shen W. C. Rare Metal Mat. Eng. 2005, 34 (z2), 673.
doi: 10.3321/j.issn:1002-185X.2005.z2.016
卢俊彪; 乐斌; 唐子龙; 张中太; 李俊荣; 沈万慈. 稀有金属材料与工程, 2005, 34 (z2), 673.
doi: 10.3321/j.issn:1002-185X.2005.z2.016
128 Yang W. Y. ; Zou M. Z. ; Zhao G. Y. ; Hong Z. S. ; Feng Q. ; Li J. X. ; Lin Y. B. ; Huang Z. G. Solid State Ionics 2016, 292, 103.
doi: 10.1016/j.ssi.2016.05.017
129 Saliman M. A. ; Okawa H. ; Takai M. ; Ono Y. ; Kato T. ; Sugawara K. ; Sato M. Jpn. J. Appl. Phys. 2016, 55 (7S1), 07KE05.
doi: 10.7567/JJAP.55.07KE05
130 Zhao S. X. ; Li Y. D. ; Ding H. ; Li B. H. ; Nan C. W. J. Inorg. Mater. 2013, 28 (11), 1265.
doi: 10.3724/SP.J.1077.2013.13136
赵世玺; 李颖达; 丁浩; 李宝华; 南策文. 无机材料学报, 2013, 28 (11), 1265.
doi: 10.3724/SP.J.1077.2013.13136
131 Xu Y. P. ; Mao J. J. Mater. Sci. 2016, 51 (22), 10026.
doi: 10.1007/s10853-016-0229-5
132 Tang H. ; Tan L. ; Jun X. U. T. Nonferr. Metal. Soc. 2013, 23 (2), 451.
doi: 10.1016/S1003-6326(13)62484-X
133 Zhang X. P. ; Guo H. J. ; Li X. H. ; Wang Z. X. ; Peng W. J. ; Wu L. Chem. J. Chin. Univ. 2012, 33 (2), 236.
doi: 10.3969/j.issn.0251-0790.2012.02.005
张晓萍; 郭华军; 李新海; 王志兴; 彭文杰; 伍凌. 高等学校化学学报, 2012, 33 (2), 236.
doi: 10.3969/j.issn.0251-0790.2012.02.005
134 Ma Z. P. ; Shao G. J. ; Wang X. ; Song J. J. ; Wang G. L. Ionics 2013, 19 (12), 1861.
doi: 10.1007/s11581-013-0950-x
135 Ma Z. P. ; Shao G. J. ; Qin X. J. ; Fan Y. Q. ; Wang G. L. ; Song J. J. ; Liu T. T. J.Power Sources 2014, 269 (4), 194.
doi: 10.1016/j.jpowsour.2014.06.157
136 Ma Z. P. ; Peng Y. S. ; Wang G. L. ; Fan Y. Q. ; Song J. J. ; Liu T. T. ; Qin X. J. ; Shao G. J. Electrochim. Acta. 2015, 156 (12), 77.
doi: 10.1016/j.electacta.2015.01.015
137 Bai Y. M. ; Qiu P. ; Wen Z. L. ; Han S. C. J. Alloy. Compd. 2010, 508 (1), 1.
doi: 10.1016/j.jallcom.2010.05.173
138 Huang Y. H. ; Goodenough J. B. Chem. Mater. 2008, 20 (23), 7237.
doi: 10.1021/cm8012304
139 Sehrawat R. ; Sil A. J. Mater. Sci.: Mater. Electron. 2015, 26 (7), 5175.
doi: 10.1007/s10854-015-3048-6
140 Yamada A. ; Chung S. C. ; Hinokuma K. J. Electrochem. Soc. 2001, 148 (3), A224.
doi: 10.1149/1.1348257
141 Wu J. ; Dathar G. K. P. ; Sun C. W. ; Theivanayagam M. G. ; Applestone D. ; Dylla A. G. ; Manthiram A. ; Henkelman G. ; Goodenough J. B. ; Stevenson K. J. Nanotechnology 2013, 24 (42), 424009.
doi: 10.1088/0957-4484/24/42/424009
142 Huang H. ; Yin S. C. ; Nazar L. F. Electrochem. Solid-State Lett. 2001, 4 (10), A170.
doi: 10.1149/1.1396695
143 Saravanan K. ; Balaya P. ; Reddy M. V. ; Chowdari B. V. R. ; Vittal J. J. Energy Environ. Sci. 2010, 3 (4), 457.
doi: 10.1039/B923576K
144 Hong S. A. ; Kim S. J. ; Chung K. Y. ; Chun M. S. ; Lee B. G. ; Kim J. J. Supercrit. Fluids. 2013, 73, 70.
doi: 10.1016/j.supflu.2012.11.008
145 Liu T. F. ; Zhao L. ; Wang D. L. ; Zhu J. S. ; Wang B. ; Guo C. F. RSC Adv. 2014, 4 (20), 10067.
doi: 10.1039/C3RA46975A
146 Liu Z. X. ; Xu B. ; Xing Y. ; Li J. J. ; Zhang L. S. ; Wang L. Z. ; Fang S. M. J. Nanopart. Res. 2015, 17 (3), 163.
doi: 10.1007/s11051-015-2969-6
147 Viji M. ; Swain P. ; Mocherla P. S. V. ; Sudakar C. RSC Adv. 2016, 6 (46), 39710.
doi: 10.1039/C6RA04468A
148 Wilcox J. D. ; Doeff M. M. ; Marcinek M. ; Kostecki R. J. Electrochem. Soc. 2007, 154 (5), A389.
doi: 10.1149/1.2667591
149 Yu F. ; Zhang L. L. ; Li Y. C. ; An Y. X. ; Zhu M. Y. ; Dai B. RSC Adv. 2014, 4 (97), 54576.
doi: 10.1039/C4RA10899J
[1] 黄学辉,商晓辉,牛鹏举. SBA-15表面改性及其对介孔La0.8Sr0.2CoO3钙钛矿型催化剂结构和性能的影响[J]. 物理化学学报, 2017, 33(7): 1462-1473.
[2] 黄于芬,张海龙,杨铮铮,赵明,黄木兰,梁艳丽,王健礼,陈耀强. CeO2的添加对柴油车氧化催化剂Pt/SiO2-Al2O3的NO氧化性能提高的影响[J]. 物理化学学报, 2017, 33(6): 1242-1252.
[3] 吴倩,翁维正,刘春丽,黄传敬,夏文生,万惠霖. 制备方法对Nd2O3上过氧物种光诱导生成的影响[J]. 物理化学学报, 2017, 33(10): 2064-2071.
[4] 余翠平,王岩,崔接武,刘家琴,吴玉程. TiO2纳米管阵列的多重改性及其在超级电容器中应用的最新进展[J]. 物理化学学报, 2017, 33(10): 1944-1959.
[5] 李宛飞, 刘美男, 王健, 张跃钢. 化学改性碳在锂硫电池中的研究进展[J]. 物理化学学报, 2017, 33(1): 165-182.
[6] 方永进, 陈重学, 艾新平, 杨汉西, 曹余良. 钠离子电池正极材料研究进展[J]. 物理化学学报, 2017, 33(1): 211-241.
[7] 邱伟涛, 黄勇潮, 王子龙, 肖爽, 纪红兵, 童叶翔. 光电催化分解水的光阳极改性策略[J]. 物理化学学报, 2017, 33(1): 80-102.
[8] 孙小祥, 陈宇, 赵剑曦. 气相二氧化硅/季铵Gemini表面活性剂稳定的泡沫体系[J]. 物理化学学报, 2016, 32(8): 2045-2051.
[9] 张雪,韩洋,柴双志,胡南滔,杨志,耿会娟,魏浩. Cu2ZnSn(S,Se)4薄膜太阳电池研究进展[J]. 物理化学学报, 2016, 32(6): 1330-1346.
[10] 陈博才,沈洋,魏建红,熊锐,石兢. 基于g-C3N4的Z型光催化体系研究进展[J]. 物理化学学报, 2016, 32(6): 1371-1382.
[11] 李清, 杨登峰, 王建花, 武琪, 刘清芝. 直径大于2nm的(15,15)碳纳米管的仿生生物改性及其脱盐行为的分子模拟[J]. 物理化学学报, 2016, 32(3): 691-700.
[12] 王吟, 孙凤玲, 张晓东, 陶红, 杨一琼. 微波辅助细菌纤维素酯的制备及对Pb(II)的高效去除[J]. 物理化学学报, 2016, 32(3): 753-762.
[13] 赫荣安, 曹少文, 余家国. 铋系光催化剂的形貌调控与表面改性研究进展[J]. 物理化学学报, 2016, 32(12): 2841-2870.
[14] 赵侦超, 张维萍. 二维层状分子筛前驱体的合成、改性及催化应用[J]. 物理化学学报, 2016, 32(10): 2475-2487.
[15] 胡思, 张卿, 尹琪, 张亚飞, 巩雁军, 张瑛, 吴志杰, 窦涛. 氢氧化钠-氟硅酸铵改性HZSM-5催化甲醇制丙烯[J]. 物理化学学报, 2015, 31(7): 1374-1382.