Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (6): 1085-1107    DOI: 10.3866/PKU.WHXB201704114
综述     
LiFePO4电化学反应机理、制备及改性研究新进展
张英杰, 朱子翼, 董鹏, 邱振平, 梁慧新, 李雪
昆明理工大学, 锂离子电池及材料制备技术国家地方联合工程实验室, 云南省先进电池材料重点实验室(筹), 昆明 650000
New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4
ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue
National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650000, P. R. China
 全文: PDF(6417 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

作为用于可持续能源的有效能量存储装置,锂离子电池因具有优异的电化学性能而得到广泛研究,是非常有发展潜力的储能电池体系,其技术发展及应用的关键在于电极材料的研发。LiFePO4作为锂离子电池正极材料之一,具有循环寿命长、能量密度大、充放电平稳、热稳定性良好、安全性好、重量轻和低毒性等优点,备受国内外专家的专注。然而,LiFePO4正极材料的研究还存在一些技术瓶颈,由于其存在电导率相对较低、锂离子扩散系数小以及振实密度不高等问题,导致循环性能、低温特性和高倍率充放电性能等并不理想,因而制约着它的应用和发展。近几年研究工作者通过改进制备工艺以及进行相关改性研究,旨在逐步解决上述问题。本文简要综述了LiFePO4正极材料的最新研究成果,就其结构特征、电化学反应机理、制备方法和改性进行了系统介绍。探讨了目前LiFePO4正极材料面临的主要问题及可能的解决策略,并对其未来的研究方向和应用前景进行了展望。

关键词: LiFePO4研究进展电化学反应机理制备方法改性    
Abstract:

Lithium-ion batteries have been extensively studied due to their excellent electrochemical performance as an effective energy storage device for sustainable energy sources. The key to the development and application of this technology is the improvement of electrode materials. LiFePO4 has captured the attention of researchers both home and abroad as a potential cathode material for lithium-ion batteries because of its long cycle life, energy density, stable charge/discharge performance, good thermal stability, high safety, light weight and low toxicity. However, there are still some technical bottlenecks in the application of LiFePO4, such as relatively low conductivity, low diffusion coefficient of lithium ions, and low tap density. Moreover, the cycle performance, low-temperature characteristics, and rate performance are not ideal, restricting its application and development. In recent years, researchers have sought to solve these problems by improving the preparation process and attempting related modifications. In this paper, we have provided a systemic review of the structure, electrochemical reaction mechanism, preparation, and modification of LiFePO4. The main problems associated with LiFePO4 cathode materials and possible solutions are discussed. We have also investigated the future research direction and application prospect of LiFePO4 cathode materials.

Key words: LiFePO4    Research progress    Electrochemical reaction mechanism    Preparation method    Modification
收稿日期: 2016-12-11 出版日期: 2017-04-11
中图分类号:  O646  
基金资助:

国家自然科学基金(51604132)资助项目

通讯作者: 李雪     E-mail: 438616074@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张英杰
朱子翼
董鹏
邱振平
梁慧新
李雪

引用本文:

张英杰, 朱子翼, 董鹏, 邱振平, 梁慧新, 李雪. LiFePO4电化学反应机理、制备及改性研究新进展[J]. 物理化学学报, 2017, 33(6): 1085-1107.

ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107.

链接本文:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/10.3866/PKU.WHXB201704114        http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/CN/Y2017/V33/I6/1085

(1) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B.J. Electrochem. Soc. 1997, 144 (4), 1188. doi: 10.1149/1.1837571
(2) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144 (5), 1609. doi: 10.1149/1.1837649
(3) Bi, Z. Y.; Zhang, X. D.; He, W.; Min, D. D.; Zhang, W. S. RSC Adv. 2013, 3 (43), 19744. doi: 10.1039/C3RA42601G
(4) Dimesso, L.; Förster, C.; Jaegermann, W.; Khanderi, J. P.; Tempel, H.; Popp, A.; Engstler, J.; Schneider, J. J.; Sarapulova, A.; Mikhailova, D.; Schmitt, L. A.; Oswaldc, S.; Ehrenbergd, H. Chem. Soc. Rev. 2012, 41 (15), 5068. doi: 10.1039/C2CS15320C
(5) Sun, X. F; Xu, Y. L.; Liu, Y. H.; Li, L. Acta Phys. -Chim. Sin. 2012, 28 (12), 2885. [孙孝飞, 徐友龙, 刘养浩, 李璐. 物理化学学报, 2012, 28 (12), 2885.] doi: 10.3866/PKU.WHXB201209271
(6) Zhang, Y.; Huo, Q. Y.; Du, P. P.; Wang, L. Z.; Zhang, A. Q.; Song, Y. H.; Lv, Y.; Li, G. Y. Synth. Met. 2012, 162 (13), 1315. doi: 10.1016/j.synthmet.2012.04.025
(7) Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G.
(8) J. Power Sources 2013, 226 (3), 272. doi: 10.1016/j.jpowsour.2012.10.060
(9) Amin, R.; Balaya, P.; Maier, J. Electrochem. Solid-State Lett. 2007, 10 (1), A13. doi: 10.1149/1.2388240
(10) Morgan, D.; Ven, A. V. D.; Ceder, G. Electrochem. Solid-State Lett. 2004, 7 (2), A30. doi: 10.1149/1.1633511
(11) Chung, S. Y.; Chiang, Y. M. Electrochem. Solid-State Lett. 2003, 6 (12), A278. doi: 10.1149/1.1621289
(12) Xu, Y. N.; Chung, S. Y.; Bloking, J. T.; Chiang, Y. M.; Ching, W. Y. Electrochem. Solid-State Lett. 2004, 7 (6), A131. doi: 10.1149/1.1703470
(13) Jugovi?, D.; Uskokovi?, D. J. Power Sources 2009, 190 (2), 538. doi: 10.1016/j.jpowsour.2009.01.074
(14) Andersson, A. S.; Thomas, J. O.; Kalska, B.; Häggström, L.Electrochem. Solid-State Lett. 2000, 3 (2), 66. doi: 10.1149/1.1390960
(15) Lv, W. Q.; Niu, Y. H.; Jian, X.; Zhang, K. H. L.; Wang, W.; Zhao, J. Y.; Wang, Z. M.; Yang, W. Q.; He, W. D. Appl. Phys. Lett. 2016, 108 (8), 1188. doi: 10.1063/1.4942849
(16) Abdellahi, A.; Akyildiz, O.; Malik, R.; Thorntonc, K.; Ceder, G.J. Mater. Chem. A. 2016, 4 (15), 5436. doi: 10.1039/C5TA10498J
(17) Masrour, R.; Hlil, E. K.; Obbade, S.; Rossignol, C. Solid State Ionics 2016, 289, 214. doi: 10.1016/j.ssi.2016.03.016
(18) Gong, C. L.; Xue, Z. G.; Wen, S.; Ye, Y. S.; Xie, X. L. J. Power Sources 2016, 318 (30), 93. doi: 10.1016/j.jpowsour.2016.04.008
(19) Bruce, P. G. Chem. Commun. 1997, 19 (19), 1817. doi: 10.1039/A608551B
(20) Yuan, L. X; Wang, Z. H.; Zhang, W. X.; Hu, X. L.; Chen, J.Tao.; Huang, Y. H.; Goodenough, J. B. Energy Environ. Sci. 2011, 4 (2), 269. doi: 10.1039/C0EE00029A
(21) Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151 (10), A1517. doi: 10.1149/1.1785012
(22) Laffont, L.; Delacourt, C.; Gibot, P.; Wu, M. Y.; Kooyman, P.; Masquelier. C.; Tarascon, J. M. Chem. Mater. 2006, 18 (23), 5520. doi: 10.1021/cm0617182
(23) Delmas, C.; Maccario, M.; Croguennec, L.; Cras, F. L.; Weill, F. Nat. Mater. 2008, 7 (8), 665. doi: 10.1038/nmat2230
(24) Liu, H.; Strobridge, F. C.; Borkiewicz, O. J.; Wiaderek, K. M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P. Science 2014, 344 (6191), 1252817. doi: 10.1126/science.1252817
(25) Gu, L.; Zhu, C. B.; Li, H.; Yu, Y.; Li, C. L.; Tsukimoto, S.; Maier, J.; Ikuhara, Y. C. J. Am. Chem. Soc. 2011, 133 (13), 4661. doi: 10.1021/ja109412x
(26) Liu, X. S.; Liu, J.; Qiao, R. M.; Yu, Y.; Li, H.; Suo, L. M.; Hu, Y. S.; Chuang, Y. D.; Shu, G. J.; Chou, F. C.; Weng, T. C.; Nordlund, D.; Sokaras, D.; Wang, Y. J.; Lin, H.; Barbiellini, B.; Bansil, A.; Song, X. Y.; Liu, Z.; Yan, S. S.; Liu, G.; Qiao, S.; Richardson, T. J.; Prendergast, D.; Hussain, Z.; Groot, F. M. F.D.; Yang, W. L. J. Am. Chem. Soc. 2012, 134 (33), 13708. doi: 10.1021/ja303225e
(27) Orikasa, Y.; Maeda, T.; Koyama, Y.; Murayama, H.; Fukuda, K.; Tanida, H.; Arai, H.; Matsubara, E.; Uchimoto, Y.; Ogumi, Z. J. Am. Chem. Soc. 2013, 135 (15), 5497. doi: 10.1021/ja312527x
(28) Sun, Y.; Lu, X.; Xiao, R. J.; Li, H.; Huang, X. J. Chem. Mater. 2012, 24 (24), 4693. doi: 10.1021/cm3028324
(29) Xiao, D. D.; Gu, L. Sci. Sin. Chim. 2014, 3 (44), 295. [肖东东, 谷林. 中国科学: 化学, 2014, 3 (44), 295.] doi: 10.1360/032013-269
(30) Cui, Q.; Luo, C. H.; Li, G.; Wang, G. X.; Yan, K. P. Ind. Eng. Chem. Res. 2016, 55 (26), 7069. doi: 10.1021/acs.iecr.6b00023
(31) Churikov, A.; Gribov, A.; Bobyl, A.; Kamzin, A.; Terukov, E.Ionics 2014, 20 (1), 1. doi: 10.1007/s11581-013-0948-4
(32) Ravet, N.; Gauthier, M.; Zaghib, K.; Goodenough, J. B.; Mauger, A.; Gendron, F.; Julien, C. M. Chem. Mater. 2007, 19 (10), 2595. doi: 10.1021/cm070485r
(33) Xiao, Z. W.; Zhang, Y. J.; Hu, G. R. J. Cent. South Univ. 2015, 22 (6), 2043. doi: 10.1007/s11771-015-2727-z
(34) Xiao, Z. W.; Zhang, Y. J.; Hu, G. R. J. Cent. South Univ. 2015, 22 (12), 4507. doi: 10.1007/s11771-015-2999-3
(35) Xiao, Z.; Zhang, Y. J.; Hu, G. R. J. Appl. Electrochem. 2015, 45 (3), 225. doi: 10.1007/s10800-014-0780-1
(36) Weng, S. Y.; Yang, Z. H.; Wang, Q.; Zhang, J.; Zhang, W. X.Ionics 2013, 19 (2), 235. doi: 10.1007/s11581-012-0746-4
(37) Hu, Y. M.; Wang, G. H.; Liu, C. Z.; Chou, S. L.; Zhu, M. Y.; Jin, H. M.; Li, W. X.; Li, Y. Ceram. Int. 2016, 42 (9), 11422. doi: 10.1016/j.ceramint.2016.04.075
(38) Dhindsa, K. S.; Kumar, A.; Nazri, G. A.; Naik, V. M.; Garg, V.K.; Oliveira, A. C.; Vaishnava, P. P.; Zhou, Z. X.; Naik, R. J. Solid State Electrochem. 2016, 20 (8), 2275. doi: 10.1007/s10008-016-3239-y
(39) Reklaitis, J.; Davidonis, R.; Dindune, A.; Valdniece, D.; Jasulaitien?, V.; Baltrūnas, D. Phys. Status Solidi B 2016, 253 (11), 2283. doi: 10.1002/pssb.201600028
(40) Ziolkowska, D. A.; Jasinski, J. B.; Hamankiewicz, B.; Korona, K. P.; Wu, S. H.; Czerwinski. Cryst. Growth Des. 2016, 16 (9), 5006. doi: 10.1021/acs.cgd.6b00575
(41) Xu, C. H.; Wang, L.; He, X. M.; Luo, J.; Shang, Y. M.; Wang, J.L. Int. J. Electrochem. Sci. 2016, 11 (2), 1558
(42) Zhao, H. C.; Song, Y.; Guo, X. D.; Zhong, B. H.; Dong, J.; Liu, H. Acta Phys. -Chim. Sin. 2011, 27 (10), 2347. [赵浩川, 宋杨, 郭孝东, 钟本和, 董静, 刘恒. 物理化学学报, 2011, 27 (10), 2347.] doi: 10.3866/PKU.WHXB20110905
(43) Toprakci, O.; Ji, L. W.; Lin, Z.; Toprakci, H. A. K.; Zhang, X.W. J. Power Sources 2011, 196 (18), 7692. doi: 10.1016/j.jpowsour.2011.04.031
(44) Doeff, M. M.; Wilcox, J. D.; Yu, R.; Aumentado, A.; Marcinek, M.; Kostecki, R. J. Solid State Electrochem. 2008, 12 (7), 995. doi: 10.1007/s10008-007-0419-9
(45) Wang, M.; Xue, Y. H.; Zhang, K. L.; Zhang, Y. X. Electrochim. Acta 2011, 56 (11), 4294. doi: 10.1016/j.electacta.2011.01.074
(46) Akiya, N.; Savage, P. E. Chem. Rev. 2002, 102 (8), 2725. doi: 10.1021/cr000668w
(47) Xi, X. L.; Chen, G. L.; Nie, Z. R.; He, S.; Pi, X.; Zhu, X. G.; Zhu, J. J.; Zuo, T. Y. J. Alloy. Compd. 2010, 497 (1), 377. doi: 10.1016/j.jallcom.2010.03.078
(48) Needham, S. A.; Calka, A.; Wang, G.X.; Mosbah, A.; Liu, H, K.Electrochem. Commun. 2006, 8 (3), 434. doi: 10.1016/j.elecom.2005.12.011
(49) Gu, N. Y.; Wang, H.; Li, Y.; Ma, H. Y.; He, X. H.; Yang, Z. Y. J. Solid State Electrochem. 2014, 18 (3), 771. doi: 10.1007/s10008-013-2319-5
(50) Xu, J.; Chen, G.; Xie, C. D.; Li, X.; Zhou, Y. H. Solid State Commun. 2008, 147 (11), 443. doi: 10.1016/j.ssc.2008.07.013
(51) Doan, T. N. L.; Bakenov, Z.; Taniguchi, I. Adv. Powder Technol. 2010, 21 (2), 187. doi: 10.1016/j.apt.2009.10.016
(52) Hwang, B. J.; Hsu, K. F.; Hu, S. K.; Cheng, M. Y.; Chou, T. C.; Tsay, S. Y.; Santhanamd, R. J. Power Sources 2009, 194 (1), 515. doi: 10.1016/j.jpowsour.2009.05.006
(53) Hu, Y. K.; Ren, J. X.; Wei, Q. L.; Guo, X. D.; Tang, Y.; Zhong, B. H.; Liu, H. Acta Phys. -Chim. Sin. 2014, 30 (1), 75. [胡有坤, 任建新, 魏巧玲, 郭孝东, 唐艳, 钟本和, 刘恒. 物理化学学报, 2014, 30 (1), 75.] doi: 10.3866/PKU.WHXB201311261
(54) Palomares, V.; Goñi, A.; Muro, I. G. D.; Meatza, I. D.; Bengoechea, Miguel.; Miguel, O.; Rojoa, T. J. Power Sources 2007, 171 (2), 879. doi: 10.1016/j.jpowsour.2007.06.161
(55) Zhu, C.; Yu, Y.; Gu, L.; Weichert, K.; Maier, J. Angew. Chem. Int. Ed. 2011, 50 (28), 6278. doi: 10.1002/anie.201005428
(56) Shao, D. Q.; Wang, J. X.; Dong, X. T.; Yu, W. S.; Liu, G. X.; Zhang, F. F.; Wang, L. M. J. Mater. Sci. -Mater. Electron. 2014, 25 (2), 1040. doi: 10.1007/s10854-013-1684-2
(57) Qiu, Y. J.; Geng, Y. H.; Li, N. N.; Liu, X. L.; Zuo, X. B. Mater. Chem. Phys. 2014, 144 (3), 226. doi: 10.1016/j.matchemphys.2013.12.027
(58) Zhang, C. H.; Liang, Y. Z.; Yao, L.; Qiu, Y. P. J. Alloy. Compd. 2015, 627 (8), 91. doi: 10.1016/j.jallcom.2014.12.067
(59) Patil, K. C.; Aruna, S. T.; Ekambaram, S. Curr. Opin. Solid State Mater. Sci. 1997, 2 (2), 158. doi: 10.1016/S1359-0286 (97)80060-5
(60) Sehrawat, R.; Sil, A. Ionics 2015, 21 (3), 673. doi: 10.1007/s11581-014-1229-6
(61) Mohan, E. H.; Siddhartha, V. Aims Mater. Sci. 2014, 1 (4), 191. doi: 10.3934/matersci.2014.4.191
(62) Vujkovi?, M.; Jugovi?, D.; Mitri?, M.; Stojkovic, I.; Cvjeti?anin, N.; Mentus, Slavko. Electrochim. Acta 2013, 109 (11), 835. doi: 10.1016/j.electacta.2013.07.219
(63) Chu, D. B.; Li, Y.; Song, Q.; Zhou, Y. Acta Phys. -Chim. Sin. 2011, 27 (8), 1863. [褚道葆, 李艳, 宋奇, 周莹. 物理化学学报, 2011, 27 (8), 1863.] doi: 10.3866/PKU.WHXB20110807
(64) Wu, T.; Ma, X.; Liu, X.; Zeng, G.; Xiao, W. Adv. Funct. Mater. 2016, 30 (2), A70. doi: 10.1179/17535557A15Y.000000011
(65) Tang, H.; Xu, J. Mater. Sci. Eng., B 2013, 178 (20), 1503. doi: 10.1016/j.mseb.2013.08.014
(66) Li, Y. C.; Geng, G. G.; Hao, J. H.; Zhang, J. M.; Yang, C. C.; Li, B. J. Electrochim. Acta 2015, 186 (20), 157. doi: 10.1016/j.electacta.2015.10.121
(67) Teja, A. S.; Eckert, C. A. Ind. Eng. Chem. Res. 2000, 39 (12), 4442. doi: 10.1021/ie000915m
(68) Hauthal, W H. Chemosphere 2001, 43 (1), 123. doi: 10.1016/S0045-6535 (00)00332-5
(69) Lee, J.; Teja, A. S. Mater. Lett. 2006, 60 (17), 2105. doi: 10.1016/j.matlet.2005.12.083
(70) Zhang, Y. J.; Yang, Y. F.; Wang, X. Y.; Li, S. S. Chin. J. Chem. Eng. 2014, 22 (2), 234. doi: 10.1016/S1004-9541 (14)60051-3
(71) Rangappa, D.; Sone, K.; Ichihara, M.; Kudo, T.; Honma, I.Chem. Commun. 2010, 46 (40), 7548. doi: 10.1039/c0cc03034a
(72) Xie, M.; Zhang, X. X.; Wang, Y. Z.; Deng, S. X.; Wang, H.; Liu, J. B.; Yan, H.; Laakso, J.; Levänen, E. Electrochim. Acta 2013, 94 (4), 16. doi: 10.1016/j.electacta.2013.01.131
(73) Xie, M.; Zhang, X. X.; Deng, S. X.; Wang, Y. Z.; Wang, H.; Liu, J. B.; Yan, H.; Laakso, J.; Levänen, E. RSC Adv. 2013, 3 (31), 12786. doi: 10.1039/C3RA41133H
(74) Wang, Y. G.; He, P.; Zhou, H. S. Energy Environ. Sci. 2011, 4 (3), 805. doi: 10.1039/c0ee00176g
(75) Zhang, D. Y.; Zhang, P. X.; Lin, M. C.; Liu, K.; Yuan, Q. H.; Xu, Q. M.; Luo, Z. K.; Ren, X. Z. J. Inorg. Mater. 2011, 26 (3), 265. [张冬云, 张培新, 林木崇, 刘琨, 袁秋华, 许启明, 罗仲宽, 任祥忠. 无机材料学报, 2011, 26 (3), 265.] doi: 10.3724/SP.J.1077.2011.00265
(76) Ni, J. F.; Zhou, H, H.; Chen, J. T.; Su, G. Y. Acta Phys. -Chim. Sin. 2004, 20 (6), 582. [倪江锋, 周恒辉, 陈继涛, 苏光耀. 物理化学学报, 2004, 20 (6), 582.] doi: 10.3866/PKU.WHXB20040606
(77) Chen, Y.; Wang, Z. L.; Yu, C. Y.; Xia, D. G.; Wu, Z. Y. Acta Phys. -Chim. Sin. 2008, 24 (8), 1498. [陈宇, 王忠丽, 于春洋, 夏定国, 吴自玉. 物理化学学报, 2008, 24 (8), 1498.] doi: 10.3866/PKU.WHXB20080829
(78) Mi, C. H.; Cao, G. S.; Zhao, X. B. Chin. J. Inorg. Chem. 2005, 21 (4), 556. [米常焕, 曹高劭, 赵新兵. 无机化学学报, 2005, 21 (4), 556.] doi: 10.3321/j.issn:1001-4861.2005.04.022
(79) Yu, F.; Zhang, J. J.; Yang, Y. F.; Song, G. Z. Chin. J. Inorg. Chem. 2009, 25 (1), 42. [于锋, 张敬杰, 杨岩峰, 宋广智.无机化学学报, 2009, 25 (1), 42.] doi: 10.3321/j.issn:1001-4861.2009.01.008
(80) Mi, C. H.; Cao, Y. X.; Zhang, X. G.; Zhao, X. B.; Li, H. L.Powder Technol. 2008, 181 (3), 301. doi: 10.1016/j.powtec.2007.05.017

[1] 黄学辉, 商晓辉, 牛鹏举. SBA-15表面改性及其对介孔La0.8Sr0.2CoO3钙钛矿型催化剂结构和性能的影响[J]. 物理化学学报, 2017, 33(7): 1462-1473.
[2] 黄于芬, 张海龙, 杨铮铮, 赵明, 黄木兰, 梁艳丽, 王健礼, 陈耀强. CeO2的添加对柴油车氧化催化剂Pt/SiO2-Al2O3的NO氧化性能提高的影响[J]. 物理化学学报, 2017, 33(6): 1242-1252.
[3] 吴倩, 翁维正, 刘春丽, 黄传敬, 夏文生, 万惠霖. 制备方法对Nd2O3上过氧物种光诱导生成的影响[J]. 物理化学学报, 2017, 33(10): 2064-2071.
[4] 余翠平, 王岩, 崔接武, 刘家琴, 吴玉程. TiO2纳米管阵列的多重改性及其在超级电容器中应用的最新进展[J]. 物理化学学报, 2017, 33(10): 1944-1959.
[5] 邱伟涛, 黄勇潮, 王子龙, 肖爽, 纪红兵, 童叶翔. 光电催化分解水的光阳极改性策略[J]. 物理化学学报, 2017, 33(1): 80-102.
[6] 李宛飞, 刘美男, 王健, 张跃钢. 化学改性碳在锂硫电池中的研究进展[J]. 物理化学学报, 2017, 33(1): 165-182.
[7] 方永进, 陈重学, 艾新平, 杨汉西, 曹余良. 钠离子电池正极材料研究进展[J]. 物理化学学报, 2017, 33(1): 211-241.
[8] 孙小祥, 陈宇, 赵剑曦. 气相二氧化硅/季铵Gemini表面活性剂稳定的泡沫体系[J]. 物理化学学报, 2016, 32(8): 2045-2051.
[9] 张雪, 韩洋, 柴双志, 胡南滔, 杨志, 耿会娟, 魏浩. Cu2ZnSn(S,Se)4薄膜太阳电池研究进展[J]. 物理化学学报, 2016, 32(6): 1330-1346.
[10] 陈博才, 沈洋, 魏建红, 熊锐, 石兢. 基于g-C3N4的Z型光催化体系研究进展[J]. 物理化学学报, 2016, 32(6): 1371-1382.
[11] 李清, 杨登峰, 王建花, 武琪, 刘清芝. 直径大于2nm的(15,15)碳纳米管的仿生生物改性及其脱盐行为的分子模拟[J]. 物理化学学报, 2016, 32(3): 691-700.
[12] 王吟, 孙凤玲, 张晓东, 陶红, 杨一琼. 微波辅助细菌纤维素酯的制备及对Pb(II)的高效去除[J]. 物理化学学报, 2016, 32(3): 753-762.
[13] 赫荣安, 曹少文, 余家国. 铋系光催化剂的形貌调控与表面改性研究进展[J]. 物理化学学报, 2016, 32(12): 2841-2870.
[14] 赵侦超, 张维萍. 二维层状分子筛前驱体的合成、改性及催化应用[J]. 物理化学学报, 2016, 32(10): 2475-2487.
[15] 胡思, 张卿, 尹琪, 张亚飞, 巩雁军, 张瑛, 吴志杰, 窦涛. 氢氧化钠-氟硅酸铵改性HZSM-5催化甲醇制丙烯[J]. 物理化学学报, 2015, 31(7): 1374-1382.