Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (7): 1354-1365    DOI: 10.3866/PKU.WHXB201704144
综述     
分子动力学模拟技术在生物分子研究中的进展
曹了然1,张春煜2,张鼎林1,楚慧郢1,张跃斌1,李国辉1,*()
1 中国科学院大连化学物理研究所分子模拟与设计研究组,分子反应动力学国家重点实验室,辽宁大连116023
2 辽河油田总医院,辽宁盘锦124010
Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules
1 Laboratory of Molecular Modeling and Design, State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
2 Liaohe Oil Field General Hospital, Panjin 124010, Liaoning Province, P. R. China
 全文: PDF(741 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

在当今科学探索中,分子动力学模拟作为实验的辅助,替代甚至引导,有越来越大的重要性。在这篇综述里,我们概括介绍了分子模拟领域的发展历史,特别是专注于近期的进展,包括新的分子力场,增强采样技术以及在研究生物分子体系方面的最新成果。

关键词: 分子动力学模拟分子力场增强采样酶促反应    
Abstract:

Molecular dynamics simulation (MDS) has gained increasing importance in current-day scientific research, as the supplement, guidance, or even replacement of experiments. In this review, we briefly introduce the history of the development of molecular dynamics simulation, focusing on recent progress including new-generation force fields, modern enhanced sampling schemes, and application for the investigation of complex biomolecules.

Key words: Molecular dynamics simulation    Force field    Enhanced sampling    Enzyme reaction
收稿日期: 2016-12-01 出版日期: 2017-04-14
中图分类号:  O641  
基金资助: 国家自然科学基金(21573217);国家自然科学基金(91430110);国家自然科学基金(31370714);国家自然科学基金(21625302)
通讯作者: 李国辉     E-mail: ghli@dicp.ac.cn
作者简介: CAO Liao-Ran, has been working in Dr. Li's research group since 2015 and his research mainly focuses on using enhanced sampling techniques to study complex biochemical processes, including enzyme reactions and conformational change of macromolecules|ZHANG Chun-Yu, was a visiting scholar in DICP. Her research focuses on biomedicine|ZHANG Ding-Lin, received his Master degree from Jilin University in 2007. He is currently an assistant researcher in Prof. LI Guo-Hui's group since 2009. His research focuses on computational biology|CHU Hui-Ying, received her PhD degree from Jinlin University in 2009. Since 2009, she has been working in Dalian Institute of Chemical Physics, Chinese Academy of Sciences as an associate professor, a lecturer and a postdoctoral researcher. Her research interests now mainly focus on the construction of polarizable force field|ZHANG Yue-Bin, received his Ph.D degree from the key laboratory for molecular enzymology & engineering, Jilin University in 2010. From 2010-2013, he worked as a post-doc at the state key laboratory of superamolecular structure and Materials, Jilin University. From July 2013, He joined the state key laboratory of molecular reaction dynamics, the Dalianinstitute of chemical physics, Chinese Academy of Sciences. His research aims at the understanding of the physics and function of proteins, protein complexes, and other biomolecular structures at the atomic level using computer simulations|LI Guo-Hui, received his Ph.D degree from Dalian Institute of Chemical Physics in 2000, and is now working as a professor there. His research focuses on systematic methodology developments and applications on the mechanical analysis and theoretical predictions of biomolecular structures and functions, including coarse-grained model with all atomistic accuracy, polarizable molecular models and simulation strategy with a combination of software and hardware acceleration methods
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曹了然
张春煜
张鼎林
楚慧郢
张跃斌
李国辉

引用本文:

曹了然,张春煜,张鼎林,楚慧郢,张跃斌,李国辉. 分子动力学模拟技术在生物分子研究中的进展[J]. 物理化学学报, 2017, 33(7): 1354-1365.

链接本文:

http://www.whxb.pku.edu.cn/CN/Y2017/V33/I7/1354

1 Alder B. J. ; Wainwright T. E. J. Chem. Phys. 1959, 31, 459.
doi: 10.1063/1.1730376
2 McDaniel J. G. ; Schmidt J. R. Annu. Rev. Phys. Chem. 2016, 67, 467.
doi: 10.1146/annurev-physchem-040215-112047
3 Karplus S. ; Lifson S. Biopolymers 1971, 10, 1973.
doi: 10.1002/bip.360101014
4 Warshel A. Israel J. Chem. 1973, 11, 709.
doi: 10.1002/ijch.v11.5
5 Warshel A. ; Levitt M. ; Lifson S. J. Mol. Spectrosc. 1970, 33, 84.
doi: 10.1016/0022-2852(70)90054-8
6 Warshel A. ; Lifson S. J. Chem. Phys. 1970, 53, 582.
doi: 10.1063/1.1674031
7 Allinger N. L. ; Yuh Y. H. ; Lii J. H. J. Am. Chem. Soc. 1989, 111, 8551.
doi: 10.1021/ja00205a001
8 Halgren T. A. Abstr. Pap. Am. Chem. S. 1992, 204, 38.
9 Halgren T. A. ; Bush B. L. Abstr. Pap. Am. Chem. S. 1996, 212, 2.
10 Halgren T. A. ; Nachbar R. B. Abstr. Pap. Am. Chem. S. 1996, 211, 70.
11 Rappe A. K. ; Casewit C. J. ; Colwell K. S. ; Goddard W. A. ; Skiff W. M. J. Am. Chem. Soc. 1992, 114, 10024.
doi: 10.1021/ja00051a040
12 Mayo S. L. ; Olafson B. D. ; Goddard W. A. J. Phys. Chem-Us. 1990, 94, 8897.
doi: 10.1021/j100389a010
13 Case D. A. ; Cheatham T. E.3rd ; Darden T. ; Gohlke H. ; Luo R. ; Merz K. M.Jr. ; Onufriev A. ; Simmerling C. ; Wang B. ; Woods R. J. J. Comput. Chem. 2005, 26, 1668.
doi: 10.1002/jcc.20290
14 Cornell W. D. ; Cieplak P. ; Bayly C. I. ; Gould I. R. ; Merz K. M. ; Ferguson D. M. ; Spellmeyer D. C. ; Fox T. ; Caldwell J. W. ; Kollman P. A. J. Am. Chem. Soc. 1996, 118, 2309.
doi: 10.1021/ja955032e
15 Best R. B. ; Mittal J. ; Feig M. ; MacKerell A. D., Jr. Biophys. J. 2012, 103, 1045.
doi: 10.1016/j.bpj.2012.07.042
16 Guvench O. ; Hatcher E. R. ; Venable R. M. ; Pastor R. W. ; Mackerell A. D. J. Chem. Theory Comput. 2009, 5, 2353.
doi: 10.1021/ct900242e
17 Hart K. ; Foloppe N. ; Baker C. M. ; Denning E. J. ; Nilsson L. ; Mackerell A. D., Jr. J. Chem. Theory Comput. 2012, 8, 348.
doi: 10.1021/ct200723y
18 MacKerell A. D.Jr. ; Banavali N. ; Foloppe N. Biopolymers 2000, 56, 257.
doi: 10.1002/1097-0282(2000)56:4<257::AIDBIP10029>3.0.CO;2-W
19 Mallajosyula S. S. ; Guvench O. ; Hatcher E. ; Mackerell A. D., Jr. J. Chem. Theory Comput. 2012, 8, 759.
doi: 10.1021/ct200792v
20 Raman E. P. ; Guvench O. ; MacKerell A. D., Jr. J. Phys. Chem. B 2010, 114, 12981.
doi: 10.1021/jp105758h
21 Vanommeslaeghe K. ; Hatcher E. ; Acharya C. ; Kundu S. ; Zhong S. ; Shim J. ; Darian E. ; Guvench O. ; Lopes P. ; Vorobyov I. ; Mackerell A. D., Jr. J. Comput. Chem. 2010, 31, 671.
doi: 10.1002/jcc.21367
22 Yu W. ; He X. ; Vanommeslaeghe K. ; MacKerell A. D., Jr. J. Comput. Chem. 2012, 33, 2451.
doi: 10.1002/jcc.23067
23 Daura X. ; Oliva B. ; Querol E. ; Aviles F. X. ; Tapia O. Proteins 1996, 25, 89.
doi: 10.1002/(Sici)1097-0134(199605)25:1<89::Aid-Prot7>3.0.Co;2-F
24 Hansen H. S. ; Hunenberger P. H. J. Comput. Chem. 2011, 32, 998.
doi: 10.1002/jcc.21675
25 Horta B. A. C. ; Lin Z. X. ; Huang W. ; Riniker S. ; van Gunsteren W. F. ; Hunenberger P. H. J. Comput. Chem. 2012, 33, 1907.
doi: 10.1002/jcc.23021
26 Kouwijzer M. L. C. E. ; vanEijck B. P. ; Kooijman H. ; Kroon J. Aip. Conf. Proc. 1995, 330, 393.
doi: 10.1063/1.47730
27 Lins R. D. ; Hunenberger P. H. J. Comput. Chem. 2005, 26, 1400.
doi: 10.1002/jcc.20275
28 Oostenbrink C. ; Soares T. A. ; van der Vegt N. F. A. ; van Gunsteren W. F. Eur. Biophys. J. Biophy. 2005, 34, 273.
doi: 10.1007/s00249-004-0448-6
29 Ott K. H. ; Meyer B. J. Comput. Chem. 1996, 17, 1068.
doi: 10.1002/(Sici)1096-987x(199606)17:8<1068::Aid-Jcc14>3.3.Co;2-T
30 Pol-Fachin L. ; Rusu V. H. ; Verli H. ; Lins R. D. J. Chem. Theory Comput. 2012, 8, 4681.
doi: 10.1021/ct300479h
31 Reif M. M. ; Hunenberger P. H. ; Oostenbrink C. J. Chem. Theory Comput. 2012, 8, 3705.
doi: 10.1021/ct300156h
32 Smith M. D. ; Rao J. S. ; Segelken E. ; Cruz L. J Chem Inf. Model 2015, 55, 2587.
doi: 10.1021/acs.jcim.5b00308
33 Soares T. A. ; Hunenberger P. H. ; Kastenholz M. A. ; Krautler V. ; Lenz T. ; Lins R. D. ; Oostenbrink C. ; Van Gunsteren W. F. J. Comput. Chem. 2005, 26, 725.
doi: 10.1002/jcc.20193
34 Suardiaz R. ; Maestre M. ; Suarez E. ; Perez C. J. Mol. Struc-Theochem. 2006, 778, 21.
doi: 10.1016/j.theochem.2006.08.030
35 Jorgensen W. L. ; Maxwell D. S. ; TiradoRives J. J. Am. Chem. Soc. 1996, 118, 11225.
doi: 10.1021/ja9621760
36 Kaminski G. A. ; Friesner R. A. ; Tirado-Rives J. ; Jorgensen W. L. J. Phys. Chem. B 2001, 105, 6474.
doi: 10.1021/jp003919d
37 Rick S. W. ; Stuart S. J. Rev. Comp. Ch. 2002, 18, 89.
doi: 10.1002/0471433519.ch3
38 Lamoureux G. ; Roux B. J. Chem. Phys. 2003, 119, 3025.
doi: 10.1063/1.1589749
39 Kratz E. G. ; Walker A. R. ; Lagardere L. ; Lipparini F. ; Piquemal J. P. ; Andres Cisneros G. J. Comput. Chem. 2016, 37, 1019.
doi: 10.1002/jcc.24295
40 Nessler, I. J. ; Litman, J. M. ; Schnieders, M. J. Phys. Chem. Chem. Phys. 2016. doi: 10.1039/c6cp02595a
41 Soderhjelm P. ; Ryde U. J. Phys. Chem. A 2009, 113, 617.
doi: 10.1021/jp8073514
42 Zhang D. W. ; Zhang J. Z. H. J. Chem. Phys. 2003, 119, 3599.
doi: 10.1063/1.1591727
43 Yang, Z. Z. Abstr. Pap. Am. Chem. S. 2006, 231.
44 Wang C. S. ; Zhao D. X. ; Yang Z. Z. Chem. Phys. Lett. 2000, 330, 132.
doi: 10.1016/S0009-2614(00)00938-6
45 Piquemal J. P. ; Gresh N. ; Giessner-Prettre C. J. Phys. Chem. A 2003, 107, 10353.
doi: 10.1021/jp035748t
46 Jiang F. ; Zhou C. Y. ; Wu Y. D. J. Phys. Chem. B 2014, 118, 6983.
doi: 10.1021/jp5017449
47 Xun S. N. ; Jiang F. ; Wu Y. D. J. Chem. Theory Comput. 2015, 11, 1949.
doi: 10.1021/acs.jctc.5b00029
48 Zhou C. Y. ; Jiang F. ; Wu Y. D. J. Phys. Chem. B 2015, 119, 1035.
doi: 10.1021/jp5064676
49 Ponder J. W. ; Wu C. J. ; Ren P. Y. ; Pande V. S. ; Chodera J. D. ; Schnieders M. J. ; Haque I. ; Mobley D. L. ; Lambrecht D. S. ; DiStasio R. A. ; Head-Gordon M. ; Clark G. N. I. ; Johnson M. E. ; Head-Gordon T. J. Phys. Chem. B 2010, 114, 2549.
doi: 10.1021/jp910674d
50 Shi Y. ; Xia Z. ; Zhang J. J. ; Best R. ; Wu C. J. ; Ponder J. W. ; Ren P. Y. J. Chem. Theory Comput. 2013, 9, 4046.
doi: 10.1021/ct4003702
51 Peng X. D. ; Zhang Y. B. ; Chu H. Y. ; Li Y. ; Zhang D. L. ; Cao L. R. ; Li G. H. J. Chem. Theory Comput. 2016, 12, 2973.
doi: 10.1021/acs.jctc.6b00128
52 Konig G. ; Hudson P. S. ; Boresch S. ; Woodcock H. L. J. Chem. Theory Comput. 2014, 10, 1406.
doi: 10.1021/ct401118k
53 Konig G. ; Pickard F. C. t. ; Mei Y. ; Brooks B. R. J. Comput. Aided Mol. Des. 2014, 28, 245.
doi: 10.1007/s10822-014-9708-4
54 Konig G. ; Mei Y. ; Pickard F. C. ; Simmonett A. C. ; Miller B. T. ; Herbert J. M. ; Woodcock H. L. ; Brooks B. R. ; Shao Y. H. J. Chem. Theory Comput. 2016, 12, 332.
doi: 10.1021/acs.jctc.5b00874
55 Dybeck E. C. ; Konig G. ; Brooks B. R. ; Shirts M. R. J. Chem. Theory Comput. 2016, 12, 1466.
doi: 10.1021/acs.jctc.5b01188
56 Warshel A. ; Levitt M. J. Mol. Biol. 1976, 103, 227.
doi: 10.1016/0022-2836(76)90311-9
57 Boulanger E. ; Thiel W. J. Chem. Theory Comput. 2014, 10, 1795.
doi: 10.1021/ct401095k
58 Boulanger E. ; Thiel W. J. Chem. Theory Comput. 2012, 8, 4527.
doi: 10.1021/ct300722e
59 Lipparini F. ; Cappelli C. ; Barone V. J. Chem. Phys. 2013, 138, 234108.
doi: 10.1063/1.4811113
60 Lipparini F. ; Cappelli C. ; Barone V. J. Chem. Theory Comput. 2012, 8, 4153.
doi: 10.1021/ct3005062
61 Caprasecca S. ; Jurinovich S. ; Lagardere L. ; Stamm B. ; Lipparini F. J. Chem. Theory Comput. 2015, 11, 694.
doi: 10.1021/ct501087m
62 Caprasecca S. ; Jurinovich S. ; Viani L. ; Curutchet C. ; Mennucci B. J. Chem. Theory Comput. 2014, 10, 1588.
doi: 10.1021/ct500021d
63 Thellamurege N. M. ; Si D. ; Cui F. ; Zhu H. ; Lai R. ; Li H. J. Comput. Chem. 2013, 34, 2816.
doi: 10.1002/jcc.23435
64 Caprasecca S. ; Curutchet C. ; Mennucci B. J. Chem. Theory Comput. 2012, 8, 4462.
doi: 10.1021/ct300620w
65 Sneskov K. ; Schwabe T. ; Christiansen O. ; Kongsted J. Phys. Chem. Chem. Phys. 2011, 13, 18551.
doi: 10.1039/c1cp22067e
66 Schwabe T. ; Olsen J. M. ; Sneskov K. ; Kongsted J. ; Christiansen O. J. Chem. Theory Comput. 2011, 7, 2209.
doi: 10.1021/ct200258g
67 Olsen J. M. ; Aidas K. ; Mikkelsen K. V. ; Kongsted J. J. Chem. Theory Comput. 2010, 6, 249.
doi: 10.1021/ct900502s
68 Curutchet C. ; Munoz-Losa A. ; Monti S. ; Kongsted J. ; Scholes G. D. ; Mennucci B. J. Chem. Theory Comput. 2009, 5, 1838.
doi: 10.1021/ct9001366
69 Nielsen C. B. ; Christiansen O. ; Mikkelsen K. V. ; Kongsted J. J. Chem. Phys. 2007, 126, 154112.
doi: 10.1063/1.2711182
70 Loco D. ; Polack E. ; Caprasecca S. ; Lagardere L. ; Lipparini F. ; Piquemal J. P. ; Mennucci B. J. Chem. Theory Comput. 2016, 12, 3654.
doi: 10.1021/acs.jctc.6b00385
71 Dziedzic J. ; Mao Y. ; Shao Y. ; Ponder J. ; Head-Gordon T. ; Head-Gordon M. ; Skylaris C. K. J. Chem. Phys. 2016, 145, 124106.
doi: 10.1063/1.4962909
72 Han J. ; Truhlar D. G. ; Gao J. Theor. Chem. Acc. 2012, 131, 1161.
doi: 10.1007/s00214-012-1161-7
73 Leverentz H. R. ; Gao J. ; Truhlar D. G. Theor. Chem. Acc. 2011, 129, 3.
doi: 10.1007/s00214-011-0889-9
74 Xie W. ; Orozco M. ; Truhlar D. G. ; Gao J. J. Chem. Theory Comput. 2009, 5, 459.
doi: 10.1021/ct800239q
75 Song L. ; Han J. ; Lin Y. L. ; Xie W. ; Gao J. J. Phys. Chem. A 2009, 113, 11656.
doi: 10.1021/jp902710a
76 Xie W. ; Gao J. J. Chem. Theory Comput. 2007, 3, 1890.
doi: 10.1021/ct700167b
77 Xie, W. S. ; Song, L. C. ; Truhlar, D. G. ; Gao, J. L. J. Chem. Phys. 2008, 128. doi: Artn23410810.1063/1.2936122
78 Xie W. S. ; Song L. C. ; Truhlar D. G. ; Gao J. L. J. Phys. Chem. B 2008, 112, 14124.
doi: 10.1021/jp804512f
79 Gao J. L. J. Chem. Phys. 1998, 109, 2346.
doi: 10.1063/1.476802
80 Gao J. L. J. Phys. Chem. B 1997, 101, 657.
doi: 10.1021/jp962833a
81 Phillips J. C. ; Braun R. ; Wang W. ; Gumbart J. ; Tajkhorshid E. ; Villa E. ; Chipot C. ; Skeel R. D. ; Kale L. ; Schulten K. J. Comput. Chem. 2005, 26, 1781.
doi: 10.1002/jcc.20289
82 Brooks B. R. ; Brooks C. L. ; Mackerell A. D. ; Nilsson L. ; Petrella R. J. ; Roux B. ; Won Y. ; Archontis G. ; Bartels C. ; Boresch S. ; Caflisch A. ; Caves L. ; Cui Q. ; Dinner A. R. ; Feig M. ; Fischer S. ; Gao J. ; Hodoscek M. ; Im W. ; Kuczera K. ; Lazaridis T. ; Ma J. ; Ovchinnikov V. ; Paci E. ; Pastor R. W. ; Post C. B. ; Pu J. Z. ; Schaefer M. ; Tidor B. ; Venable R. M. ; Woodcock H. L. ; Wu X. ; Yang W. ; York D. M. ; Karplus M. J. Comput. Chem. 2009, 30, 1545.
doi: 10.1002/jcc.21287
83 Han, J. ; Mazack, M. J. M. ; Zhang, P. ; Truhlar, D. G. ; Gao, J. L. J. Chem. Phys. 2013, 139. doi: Artn05450310.1063/1.4816280
84 Stukan M. R. ; Asmadi A. ; Abdallah W. J. Mol. Liq. 2013, 180, 65.
doi: 10.1016/j.molliq.2012.12.023
85 Rohrdanz M. A. ; Zheng W. W. ; Clementi C. Annu. Rev. Phys. Chem. 2013, 64, 295.
doi: 10.1146/annurev-physchem-040412-110006
86 Shaw, D. E. ; Deneroff, M. M. ; Dror, R. O. ; Kuskin, J. S. ; Larson, R. H. ; Salmon, J. K. ; Young, C. ; Batson, B. ; Bowers, K. J. ; Chao, J. C. ; Eastwood, M. P. ; Gagliardo, J. ; Grossman, J. P. ; Ho, C. R. ; Ierardi, D. J. ; Kolossvary, I. ; Klepeis, J. L. ; Layman, T. ; McLeavey, C. ; Moraes, M. A. ; Mueller, R. ; Priest, E. C. ; Shan, Y. B. ; Spengler, J. ; Theobald, M. ; Towles, B. ; Wang, S. C. Conf. Proc. Int. Symp. C 2007, 1.
87 Shaw D. E. ; Deneroff M. M. ; Dror R. O. ; Kuskin J. S. ; Larson R. H. ; Salmon J. K. ; Young C. ; Batson B. ; Bowers K. J. ; Chao J. C. ; Eastwood M. P. ; Gagliardo J. ; Grossman J. P. ; Ho C. R. ; Ierardi D. J. ; Kolossvary I. ; Klepeis J. L. ; Layman T. ; Mcleavey C. ; Moraes M. A. ; Mueller R. ; Priest E. C. ; Shan Y. B. ; Spengler J. ; Theobald M. ; Towles B. ; Wang S. C. Commun. Acm. 2008, 51, 91.
doi: 10.1145/1364782.1364802
88 Shaw, D. E. ; Dror, R. O. ; Salmon, J. K. ; Grossman, J. P. ; Mackenzie, K. M. ; Bank, J. A. ; Young, C. ; Deneroff, M. M. ; Batson, B. ; Bowers, K. J. ; Chow, E. ; Eastwood, M. P. ; Ierardi, D. J. ; Klepeis, J. L. ; Kuskin, J. S. ; Larson, R. H. ; Lindorff-Larsen, K. ; Maragakis, P. ; Moraes, M. A. ; Piana, S. ; Shan, Y. B. ; Towles, B. Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis 2009.
89 Grossman, J. P. ; Towles, B. ; Greskamp, B. ; Shaw, D. E. Int. Parall. Distrib. P 2015, 860. doi: 10.1109/Ipdps.2015.42
90 Kumar S. ; Bouzida D. ; Swendsen R. H. ; Kollman P. A. ; Rosenberg J. M. J. Comput. Chem. 1992, 13, 1011.
doi: 10.1002/jcc.540130812
91 Shirts, M. R. ; Chodera, J. D. J. Chem. Phys. 2008, 129. doi: Artn12410510.1063/1.2978177
92 Mey, A. S. J. S. ; Wu, H. ; Noe, F. Phys. Rev. X 2014, 4. doi: ARTN04101810.1103/PhysRevX.4.041018
93 Compoint M. ; Picaud F. ; Ramseyer C. ; Girardet C. J. Chem. Phys. 2005, 122, 134707.
doi: 10.1063/1.1869413
94 Aci S. ; Mazier S. ; Genest D. J. Mol. Biol. 2005, 351, 520.
doi: 10.1016/j.jmb.2005.06.009
95 Kruger P. ; Verheyden S. ; Declerck P. J. ; Engelborghs Y. Protein Sci. 2001, 10, 798.
doi: 10.1110/ps.40401
96 Ferrara P. ; Apostolakis J. ; Caflisch A. Proteins 2000, 39, 252.
doi: 10.1002/(ISSN)1097-0134
97 Schlitter J. ; Engels M. ; Kruger P. J. Mol. Graph 1994, 12, 84.
doi: 10.1016/0263-7855(94)80072-3
98 Bussi G. ; Laio A. ; Parrinello M. Phys. Rev. Lett. 2006, 96, 090601.
doi: 10.1103/PhysRevLett.96.090601
99 Laio A. ; Rodriguez-Fortea A. ; Gervasio F. L. ; Ceccarelli M. ; Parrinello M. J. Phys. Chem. B 2005, 109, 6714.
doi: 10.1021/jp045424k
100 Gervasio F. L. ; Laio A. ; Parrinello M. J. Am. Chem. Soc. 2005, 127, 2600.
doi: 10.1021/ja0445950
101 Asciutto E. ; Sagui C. J. Phys. Chem. A 2005, 109, 7682.
doi: 10.1021/jp053428z
102 Micheletti C. ; Laio A. ; Parrinello M. Phys. Rev. Lett. 2004, 92, 170601.
doi: 10.1103/PhysRevLett.92.170601
103 Kurtovic Z. ; Marchi M. ; Chandler D. Mol. Phys. 1993, 78, 1155.
doi: 10.1080/00268979300100751
104 Ding K. J. ; Valleau J. P. J. Chem. Phys. 1993, 98, 3306.
doi: 10.1063/1.464102
105 Hooft R. W. W. ; Vaneijck B. P. ; Kroon J. J. Chem. Phys. 1992, 97, 6690.
doi: 10.1063/1.463947
106 Mezei M. Mol. Simulat. 1989, 3, 301.
doi: 10.1080/08927028908031382
107 Mezei M. J. Comput. Phys. 1987, 68, 237.
doi: 10.1016/0021-9991(87)90054-4
108 Harvey S. C. ; Prabhakaran M. J. Phys. Chem-Us. 1987, 91, 4799.
doi: 10.1021/j100302a030
109 Shing K. S. ; Gubbins K. E. Mol. Phys. 1981, 43, 717.
doi: 10.1080/00268978100101631
110 Peters B. ; Heyden A. ; Bell A. T. ; Chakraborty A. J. Chem. Phys. 2004, 120, 7877.
doi: 10.1063/1.1691018
111 Weinan, E. ; Ren, W. Q. ; Vanden-Eijnden, E. Phys. Rev. B 2002, 66. doi: ARTN05230110.1103/PhysRevB.66.052301
112 Tait R. J. ; Zhong J. L. Int. J. Nonlinear. Mech. 1993, 28, 713.
doi: 10.1016/0020-7462(93)90031-F
113 West, A. M. A. ; Elber, R. ; Shalloway, D. J. Chem. Phys. 2007, 126. doi: Artn14510410.1063/1.2716389
114 Majek P. ; Elber R. J. Chem. Theory Comput. 2010, 6, 1805.
doi: 10.1021/ct100114j
115 Aristoff D. ; Bello-Rivas J. M. ; Elber R. Multiscale Model Sim. 2016, 14, 301.
doi: 10.1137/15m102157x
116 Cardenas A. E. ; Elber R. J. Phys. Chem. B 2016, 120, 8208.
doi: 10.1021/acs.jpcb.6b01890
117 Abrams C. ; Bussi G. Entropy-Switz 2014, 16, 163.
doi: 10.3390/e16010163
118 Min D. ; Zheng L. ; Harris W. ; Chen M. ; Lv C. ; Yang W. J. Chem. Theory Comput. 2010, 6, 2253.
doi: 10.1021/ct100033s
119 Nymeyer H. ; Gnanakaran S. ; Garcia A. E. Methods Enzymol. 2004, 383, 119.
doi: 10.1016/S0076-6879(04)83006-4
120 Rhee Y. M. ; Pande V. S. Biophys. J. 2003, 84, 775.
doi: 10.1016/S0006-3495(03)74897-8
121 Jang S. ; Shin S. ; Pak Y. Phys. Rev. Lett. 2003, 91, 058305.
doi: 10.1103/PhysRevLett.91.058305
122 Yamamoto R. ; Kob W. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip Topics 2000, 61, 5473.
123 Machta J. ; Newman M. E. ; Chayes L. B. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip Topics 2000, 62, 8782.
124 Wu X. ; Brooks B. R. ; Vanden-Eijnden E. J. Comput. Chem. 2016, 37, 595.
doi: 10.1002/jcc.24015
125 Wu X. ; Damjanovic A. ; Brooks B. R. Adv. Chem. Phys. 2012, 150, 255.
doi: 10.1002/9781118197714.ch6
126 Damjanovic A. ; Wu X. ; Garcia-Moreno E. B. ; Brooks B. R. Biophys. J. 2008, 95, 4091.
doi: 10.1529/biophysj.108.130906
127 Lv C. ; Zheng L. ; Yang W. J. Chem. Phys. 2012, 136, 044103.
doi: 10.1063/1.3678220
128 Zheng L. ; Yang W. J. Chem. Phys. 2008, 129, 014105.
doi: 10.1063/1.2949815
129 Li H. ; Min D. ; Liu Y. ; Yang W. J. Chem. Phys. 2007, 127, 094101.
doi: 10.1063/1.2769356
130 de Oliveira C. A. ; Hamelberg D. ; McCammon J. A. J. Phys. Chem. B 2006, 110, 22695.
doi: 10.1021/jp062845o
131 Hamelberg D. ; Shen T. ; Andrew McCammon J. J. Chem. Phys. 2005, 122, 241103.
doi: 10.1063/1.1942487
132 Choudhary D. ; Clancy P. J. Chem. Phys. 2005, 122, 154509.
doi: 10.1063/1.1878733
133 Miron R. A. ; Fichthorn K. A. Phys. Rev. Lett. 2004, 93, 128301.
doi: 10.1103/PhysRevLett.93.128301
134 Hamelberg D. ; Mongan J. ; McCammon J. A. J. Chem. Phys. 2004, 120, 11919.
doi: 10.1063/1.1755656
135 Miao Y. L. ; McCammon J. A. Mol. Simulat. 2016, 42, 1046.
doi: 10.1080/08927022.2015.1121541
136 Gao, Y. Q. J. Chem. Phys. 2008, 128. doi: Artn06410510.1063/1.2825614
137 Yang L. ; Liu C. W. ; Shao Q. ; Zhang J. ; Gao Y. Q. Acc. Chem. Res. 2015, 48, 947.
doi: 10.1021/ar500267n
138 Murata K. ; Sugita Y. ; Okamoto Y. Slow Dynamics in Complex Systems 2004, 708, 332.
doi: 10.1063/1.1764161
139 Murata K. ; Sugita Y. ; Okamoto Y. Chem. Phys. Lett. 2004, 385, 1.
doi: 10.1016/j.cplett.2003.10.159
140 Awasthi S. ; Kapil V. ; Nair N. N. J. Comput. Chem. 2016, 37, 1413.
doi: 10.1002/jcc.24349
141 Wang, Q. ; Xue, T. ; Song, C. N. ; Wang, Y. ; Chen, G. J. Int. J. Mol. Sci. 2016, 17. doi: 10.3390/ijms17050692
142 Bartels C. ; Karplus M. J. Comput. Chem. 1997, 18, 1450.
doi: 10.1002/(Sici)1096-987x(199709)18:12<1450::Aid-Jcc3>3.0.Co;2-I
143 Higo J. ; Dasgupta B. ; Mashimo T. ; Kasahara K. ; Fukunishi Y. ; Nakamura H. J. Comput. Chem. 2015, 36, 1489.
doi: 10.1002/jcc.23948
144 Higo, J. ; Umezawa, K. ; Nakamura, H. J. Chem. Phys. 2013, 138. doi: Artn18410610.1063/1.4803468
145 Park S. ; Beaven A. H. ; Klauda J. B. ; Im W. J. Chem. Theory Comput. 2015, 11, 3466.
doi: 10.1021/acs.jctc.5b00232
146 Park S. ; Im W. J. Chem. Theory Comput. 2014, 10, 2719.
doi: 10.1021/ct500504g
147 Park S. ; Im W. J. Chem. Theory Comput. 2013, 9, 13.
doi: 10.1021/ct3008556
148 Dasgupta B. ; Junichi H. ; Nakamura H. Biophys. J. 2016, 110, 55a.
149 Jo S. ; Suh D. ; He Z. W. ; Chipot C. ; Roux B. J. Phys. Chem. B 2016, 120, 8733.
doi: 10.1021/acs.jpcb.6b05125
150 Wu H. ; Noe F. Multiscale Model Sim. 2014, 12, 25.
doi: 10.1137/120895883
151 Hansen H. S. ; Hunenberger P. H. J. Comput. Chem. 2010, 31, 1.
doi: 10.1002/jcc.21253
152 Wu P. ; Hu X. ; Yang W. J. Phys. Chem. Lett. 2011, 2, 2099.
doi: 10.1021/jz200808x
153 Bieler N. S. ; H?uselmann R. ; Hünenberger P. H. J. Chem. Theory Comput. 2014, 10, 3006.
doi: 10.1021/ct5002686
154 Bieler N. S. ; Tschopp J. P. ; Hunenberger P. H. J. Chem. Theory Comput. 2015, 11, 2575.
doi: 10.1021/acs.jctc.5b00118
155 Barducci, A. ; Bussi, G. ; Parrinello, M. Phys. Rev. Lett. 2008, 100. doi: ARTN02060310.1103/PhysRevLett.100.020603
156 Dama, J. F. ; Parrinello, M. ; Voth, G. A. Phys. Rev. Lett. 2014, 112. doi: ARTN24060210.1103/PhysRevLett.112.240602
157 Dama J. F. ; Rotskoff G. ; Parrinello M. ; Voth G. A. J. Chem. Theory Comput. 2014, 10, 3626.
doi: 10.1021/ct500441q
158 Sun R. ; Dama J. F. ; Tan J. S. ; Rose J. P. ; Voth G. A. J. Chem. Theory Comput. 2016, 12, 5157.
doi: 10.1021/acs.jctc.6b00206
159 Goodall M. C. Nature 1962, 196, 370.
doi: 10.1038/196370a0
160 Quhe R. G. ; Nava M. ; Tiwary P. ; Parrinello M. J. Chem. Theory Comput. 2015, 11, 1383.
doi: 10.1021/ct501002a
161 Chandler D. ; Wolynes P. G. J. Chem. Phys. 1981, 74, 4078.
doi: 10.1063/1.441588
162 Peng Y. X. ; Cao Z. ; Zhou R. H. ; Voth G. A. J. Chem. Theory Comput. 2014, 10, 3634.
doi: 10.1021/ct500447r
163 Nava M. ; Quhe R. ; Palazzesi F. ; Tiwary P. ; Parrinello M. J. Chem. Theory Comput. 2015, 11, 5114.
doi: 10.1021/acs.jctc.5b00818
164 Nava, M. ; Palazzesi, F. ; Perego, C. ; Parrinello, M. arXiv: 1607. 04846 2016.
165 Smith C. A. B. Int. Stat. Rev. 1975, 43, 242.
doi: 10.2307/1402913
166 Kadane J. B. J. Am. Stat. Assoc. 1975, 70, 248.
doi: 10.2307/2285412
167 Titekar V. G. Curr. Sci. India. 1974, 43, 327.
168 Scott A. J. Aust. J. Stat. 1974, 16, 186.
169 Hill B. M. Technometrics 1974, 16, 478.
doi: 10.1080/00401706.1974.10489222
170 Perez A. ; MacCallum J. L. ; Dill K. A. Proc. Natl. Acad. Sci. U S A 2015, 112, 11846.
doi: 10.1073/pnas.1515561112
171 MacCallum J. L. ; Perez A. ; Dill K. A. Proc. Natl. Acad. Sci. U S A 2015, 112, 6985.
doi: 10.1073/pnas.1506788112
172 Lelievre T. ; Rousset M. ; Stoltz G. Nonlinearity 2008, 21, 1155.
doi: 10.1088/0951-7715/21/6/001
173 Darve, E. ; Rodriguez-Gomez, D. ; Pohorille, A. J. Chem. Phys. 2008, 128. doi: Artn14412010.1063/1.2829861
174 Kim, J. G. ; Fukunishi, Y. ; Nakamura, H. Phys. Rev. E 2004, 70. doi: ARTN05710310.1103/PhysRevE.70.057103
175 Valsson, O. ; Parrinello, M. Phys. Rev. Lett. 2014, 113. doi: Artn09060110.1103/PhysRevLett.113.090601
176 McCarty J. ; Valsson O. ; Parrinello M. J. Chem. Theory Comput. 2016, 12, 2162.
doi: 10.1021/acs.jctc.6b00125
177 Shaffer P. ; Valsson O. ; Parrinello M. P Natl. Acad. Sci. USA 2016, 113, 1150.
doi: 10.1073/pnas.1519712113
178 Shaffer P. ; Valsson O. ; Parrinello M. J. Chem. Theory Comput. 2016, 12, 5751.
doi: 10.1021/acs.jctc.6b00786
179 Lindorff-Larsen K. ; Piana S. ; Dror R. O. ; Shaw D. E. Science 2011, 334, 517.
doi: 10.1126/science.1208351
180 Jensen M. O. ; Jogini V. ; Borhani D. W. ; Leffler A. E. ; Dror R. O. ; Shaw D. E. Science 2012, 336, 229.
doi: 10.1126/science.1216533
181 Dror R. O. ; Green H. F. ; Valant C. ; Borhani D. W. ; Valcourt J. R. ; Pan A. C. ; Arlow D. H. ; Canals M. ; Lane J. R. ; Rahmani R. ; Baell J. B. ; Sexton P. M. ; Christopoulos A. ; Shaw D. E. Nature 2013, 503, 295.
doi: 10.1038/nature12595
182 Llabrés S. ; Juárez-Jiménez J. ; Masetti M. ; Leiva R. ; Vázquez S. ; Gazzarrini S. ; Moroni A. ; Cavalli A. ; Luque F. J. J. Am. Chem. Soc. 2016, 138, 15345.
doi: 10.1021/jacs.6b07096
183 Lee S. ; Mao A. ; Bhattacharya S. ; Robertson N. ; Grisshammer R. ; Tate C. G. ; Vaidehi N. J. Am. Chem. Soc. 2016, 138, 15425.
doi: 10.1021/jacs.6b08742
184 Genna V. ; Vidossich P. ; Ippoliti E. ; Carloni P. ; Vivo M. J. Am. Chem. Soc. 2016, 138, 14592.
doi: 10.1021/jacs.6b05475
185 Marrink S. J. ; Risselada H. J. ; Yefimov S. ; Tieleman D. P. ; de Vries A. H. J. Phys. Chem. B 2007, 111, 7812.
doi: 10.1021/jp071097f
186 Wan C. K. ; Han W. ; Wu Y. D. J. Chem. Theory Comput. 2012, 8, 300.
doi: 10.1021/ct2004275
187 Orsi, M. ; Essex, J. W. Plos. One 2011, 6. doi: Artne2863710.1371/journal.pone.0028637
188 Zavadlav, J. ; Melo, M. N. ; Marrink, S. J. ; Praprotnik, M. J. Chem. Phys. 2014, 140. doi: Artn05411410.1063/1.4863329
189 Zavadlav J. ; Podgornik R. ; Melo M. N. ; Marrink S. J. ; Praprotnik M. Eur. Phys. J-Spec. Top 2016, 225, 1595.
doi: 10.1140/epjst/e2016-60117-8
190 Bereau T. ; Deserno M. J. Membr. Biol. 2015, 248, 395.
doi: 10.1007/s00232-014-9738-9
191 Bereau T. ; Wang Z. J. ; Deserno M. J. Chem. Phys. 2014, 140, 115101.
doi: 10.1063/1.4867465
192 Zamani, M. ; Kremer, S. C. Ieee. Int. C. Bioinform. 2015, 1304.
193 Saha S. ; Ekbal A. ; Sharma S. ; Bandyopadhyay S. ; Maulik U. Adv. Intell. Syst. 2013, 182, 57.
doi: 10.1007/978-3-642-32063-7
[1] 刘夫锋,范玉波,刘珍,白姝. ZAβ3和Aβ16-40亲和作用的分子机理解析[J]. 物理化学学报, 2017, 33(9): 1905-1914.
[2] 王子民,郑默,谢勇冰,李晓霞,曾鸣,曹宏斌,郭力. 基于ReaxFF力场的对硝基苯酚臭氧氧化分子动力学模拟[J]. 物理化学学报, 2017, 33(7): 1399-1410.
[3] 陈芳, 刘圆圆, 王建龙, 苏宁宁, 李丽洁, 陈红春. 混合溶剂对β-HMX结晶形貌影响的分子动力学模拟[J]. 物理化学学报, 2017, 33(6): 1140-1148.
[4] 陈贻建, 周洪涛, 葛际江, 徐桂英. 双链阴离子表面活性剂1-烷基-癸基磺酸钠在气/液界面聚集行为:分子动力学模拟研究[J]. 物理化学学报, 2017, 33(6): 1214-1222.
[5] 刘青康,宋文平,黄其涛,张广玉,侯珍秀. 热辅助存储磁盘硅掺杂非晶碳薄膜氧化的ReaxFF反应力场分子动力学模拟[J]. 物理化学学报, 2017, 33(12): 2472-2479.
[6] 孙怡然,于飞,马杰. 纳米受限水的研究进展[J]. 物理化学学报, 2017, 33(11): 2173-2183.
[7] 张陶娜,徐雪雯,董亮,谭昭怡,刘春立. 分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J]. 物理化学学报, 2017, 33(10): 2013-2021.
[8] 伍绍贵, 冯丹. 碱基对在DNA双螺旋链上分离的自由能计算[J]. 物理化学学报, 2016, 32(5): 1282-1288.
[9] 刘子瑜, 廖琦, 靳志强, 张磊, 张路. 分子动力学模拟电解质对阴非离子表面活性剂界面行为的影响[J]. 物理化学学报, 2016, 32(5): 1168-1174.
[10] 谢炜, 徐泽人, 王明, 徐四川. 左苯丙胺在多巴胺第三受体分子通道中传输分子动力学模拟[J]. 物理化学学报, 2016, 32(4): 907-920.
[11] 李清, 杨登峰, 王建花, 武琪, 刘清芝. 直径大于2nm的(15,15)碳纳米管的仿生生物改性及其脱盐行为的分子模拟[J]. 物理化学学报, 2016, 32(3): 691-700.
[12] 孟现美, 张少龙, 张庆刚. 分子动力学模拟别构抑制剂Efavirenz对HIV-1逆转录酶的作用[J]. 物理化学学报, 2016, 32(2): 436-444.
[13] 赫兰兰, 郭宇, 赵健, 姜新蕊, 杨忠志, 赵东霞. 应用ABEEMσπ极化力场对Zn2+水溶液配位微结构和水交换反应进行分子动力学模拟研究[J]. 物理化学学报, 2016, 32(12): 2921-2931.
[14] 沈洪辰, 丁吉勇, 李丽, 刘夫锋. Y220C突变体影响p53C蛋白质构象转换的分子动力学模拟[J]. 物理化学学报, 2016, 32(10): 2620-2627.
[15] 张强, 程程, 张霞, 赵东霞. 铵根离子在水溶液中的跳跃转动机理[J]. 物理化学学报, 2015, 31(8): 1461-1467.