Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (8): 1672-1680    DOI: 10.3866/PKU.WHXB201704143
论文     
Cu含量对以水滑石为前驱体的Cu/Co/Mn/Al催化剂高级醇合成性能的影响
廖珮懿1,2,张辰1,2,张丽君1,杨彦章2,钟良枢2,郭晓亚1,王慧2,*(),孙予罕2,*()
1 上海大学环境与化学工程学院,上海200444
2 中国科学院上海高等研究院,上海201210
Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas
Pei-Yi LIAO1,2,Chen ZHANG1,2,Li-Jun ZHANG1,Yan-Zhang YANG2,Liang-Shu ZHONG2,Xiao-Ya GUO1,Hui WANG2,*(),Yu-Han SUN2,*()
1 School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
2 Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
 全文: PDF(4215 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

采用共沉淀法制备了一系列不同铜钴摩尔比(0,0.1,0.5,1.0,2.0)的Cu/Co/Mn/Al层状结构催化剂并考察了其在合成气制混合醇反应中的催化性能,采用N2物理吸脱附、电感耦合等离子体原子发射光谱法(ICP-AES)、X射线衍射(XRD)、扫描电子显微镜(SEM)、氢气程序升温还原(H2-TPR),热重分析(TG)和高分辨透射电子显微镜(HRTEM)等对催化剂进行了表征分析。结果表明,适当的铜钴摩尔比可以增大催化剂的比表面积,提高催化剂的还原性能,并能形成较规整的层状结构从而提供更均一分散的合成醇活性位,从而提高催化活性和醇选择性。当铜钴摩尔比为0.5时,得到最高的醇时空产率(STY)和醇质量选择性,分别为0.071 g·g-1·h-1和35.9%。

关键词: 高级醇合成水滑石前驱体Cu/Co/Mn/Al催化剂铜钴摩尔比合成气转化    
Abstract:

A series of Cu/Co/Mn/Al catalysts derived from hydrotalcite precursors with different Cu/Co molar ratios (0, 0.1, 0.5, 1.0, and 2.0) were prepared and used for the synthesis of higher alcohols from syngas. N2 physical adsorption desorption, inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD), scanning electron microscopy (SEM), hydrogen temperature-programmed reduction (H2-TPR), thermogravimetry (TG), and high-resolution transmission electron microscopy (HRTEM) techniques were employed to investigate the physical and chemical properties of the Cu/Co/Mn/Al catalysts. The results show that the optimum Cu content can increase specific surface area, improve reducibility, and form regular layered structure to provide more uniform distribution of active sites, thereby enhancing catalytic activity and alcohol selectivity. When the Cu/Co molar ratio was 0.5, the yield of alcohol and the alcohol selectivity reached the maximum values of 0.071 g·g-1·h-1 and 35.9%, respectively.

Key words: Higher alcohols synthesis    Layered-double hydroxide    Cu/Co/Mn/Al catalyst    Cu/Co molar ratio    Syngas conversion
收稿日期: 2016-12-28 出版日期: 2017-04-14
中图分类号:  O643  
基金资助: 国家自然科学基金(21403278);神华集团有限责任公司;山西潞安矿业(集团)有限责任公司;荷兰皇家壳牌集团
通讯作者: 王慧,孙予罕     E-mail: wanghh@sari.ac.cn;yhsun@sari.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
廖珮懿
张辰
张丽君
杨彦章
钟良枢
郭晓亚
王慧
孙予罕

引用本文:

廖珮懿,张辰,张丽君,杨彦章,钟良枢,郭晓亚,王慧,孙予罕. Cu含量对以水滑石为前驱体的Cu/Co/Mn/Al催化剂高级醇合成性能的影响[J]. 物理化学学报, 2017, 33(8): 1672-1680.

Pei-Yi LIAO,Chen ZHANG,Li-Jun ZHANG,Yan-Zhang YANG,Liang-Shu ZHONG,Xiao-Ya GUO,Hui WANG,Yu-Han SUN. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas. Acta Physico-Chimica Sinca, 2017, 33(8): 1672-1680.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201704143        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I8/1672

CatalystsMolar ratio of Cu/Co/Mn/AlaMolar ratio of Cu/Co bSBET/(m2·g?1)Average pore diameter/nmPorevolume/(cm3·g?1)
CCMA-10:1:1:10.011611.20.3
CCMA-20.1:1:1:10.111413.10.4
CCMA-30.5:1:1:10.513913.90.5
CCMA-41:1:1:10.916013.40.5
CCMA-52:1:1:11.9124160.5
Table 1  Bulk composition and textural properties of catalysts.
Fig 1  XRD patterns of the dried precursors. (a) CCMA-1; (b) CCMA-2; (c) CCMA-3; (d) CCMA-4; (e) CCMA-5.
Fig 2  XRD patterns of the calcined catalysts. (a) CCMA-1; (b) CCMA-2; (c) CCMA-3; (d) CCMA-4; (e) CCMA-5.
Fig 3  H2-TPR profiles of the catalysts. (a) CCMA-1; (b) CCMA-2; (c) CCMA-3; (d) CCMA-4; (e) CCMA-5.
Fig 4  SEM images of uncalcined samples. (a) CCMA-1; (b) CCMA-2; (c) CCMA-3; (d) CCMA-4; (e) CCMA-5.
Fig 5  SEM images of uncalcined samples. (a) CCMA-1; (b) CCMA-2; (c) CCMA-3; (d) CCMA-4; (e) CCMA-5.
Fig 6  HRTEM images of calcined samples. (a) CCMA-1; (b) CCMA-2; (c) CCMA-3; (d) CCMA-4; (e) CCMA-5.
Fig 7  HRTEM images of reduced samples. (a) CCMA-1; (b) CCMA-2; (c) CCMA-3; (d) CCMA-4; (e) CCMA-5.
Fig 8  Thermogravimetry and differential thermogravimetry (TG-DTG)profiles of precursors in air.
Fig 9  CO conversion and the space-time yield. areaction conditions: T = 250 ℃, p = 6 MPa, GHSV = 3600 h?1, n(H2) : n(CO) : n(N2) = 65 : 32 : 3. bROH: total alcohol including
Fig 10  The products selectivity of ROH and CHn with Cu/Co molar ratio change. areaction conditions: T = 250 ℃, p=6 MPa, GHSV=3600 h?1, n(H2) : n(CO) : n(N2) = 65 : 32 : 3. bCHn: total hydrocarbons including methane; ROH: total alcohol including methanol.
CatalystsAlcohol selectivity/% (w)Hydrocarbon selectivity/% (w)
MeOHC2?4OHC5+OHC1C2?4C5+
CCMA-13.622.174.326.424.748.9
CCMA-214.837.947.317.545.237.3
CCMA-324.842.332.915.748.735.6
CCMA-415.430.454.215.747.936.4
CCMA-515.346.937.817.155.527.5
Table 2  Selectivity toward products with different Cu/Co ratio catalystsa.
Fig 11  The STY of alcohols with Cu/Co molar ratio change.
CatalystsFactors for alcohols (α)Factors for hydrocarbons (α)
CCMA-10.870.67
CCMA-20.710.71
CCMA-30.690.72
CCMA-40.710.72
CCMA-50.70.71
Table 3  Growth factorsa for alcohols and hydrocarbons of catalysts with different Cu/Co molar ratios.
Fig 12  Carbon distribution plots of (a) alcohols and (b) hydrocarbons. n is the number of carbon atoms in a product, Cn is the molar fraction of a product with n number of carbon atoms.
Fig 13  Olefin to paraffin ratio over catalysts.
1 Pan X. L. ; Fan Z. L. ; Chen W. Nat. Mater. 2007, 6, 507.
doi: 10.1038/nmat1916
2 Spivey J. J. ; Egbebi A. Chem. Soc. Rev. 2007, 36, 1514.
doi: 10.1039/b414039g
3 Subramani V. ; Gangwal S. K. Energy Fuels. 2008, 22, 814.
doi: 10.1021/ef700411x
4 Gupta M. ; Smith M. L. ACS Catal. 2011, 1, 641.
doi: 10.1021/cs2001048
5 Fang K. G. ; Li D. B. ; Lin M. G. Catal. Today. 2009, 147, 133.
doi: 10.1016/j.cattod.2009.01.038
6 Choi Y. M. ; Liu P. J. Am. Chem. Soc. 2009, 131, 13054.
doi: 10.1021/jacs.5b12087
7 Prieto G. ; Concepción P. J. Catal. 2011, 280, 274.
doi: 10.1016/j.jcat.2011.03.025
8 Yang N. Y. ; Medford A. J. ; Liu X.Y. J. Am. Chem. Soc. 2016, 138, 3705.
doi: 10.1021/jacs.5b12087
9 Sun J. ; Wan S. L. ; Wang F. Ind. Eng. Chem. Res. 2015, 54, 7841.
doi: 10.1021/acs.iecr.5b01927
10 Epling W. S. ; Minahan D. M. J. Catal. 1998, 175, 175.
doi: 10.1006/jcat.1998.2005
11 Xu M. T. ; Gines M. J. L. ; Hilmen A. M. J. Catal. 1997, 171, 130.
doi: 10.1006/jcat.1997.1777
12 Xiang M. L. ; Li D. B. ; Li W. H. Catal. Commun. 2007, 8, 503.
doi: 10.1016/j.catcom.2006.08.049
13 Shou H. ; Ferrari D. ACS Catal. 2012, 2, 1408.
doi: 10.1021/cs300083b
14 Thao N. T. ; Niaki M. H. Z. J. Catal. 2007, 245, 348.
doi: 10.1016/j.jcat.2006.10.026
15 Subramanian N. D. ; Balaji G. Catal. Today. 2009, 147, 100.
doi: 10.1016/j.cattod.2009.02.027
16 Xu H. Y. ; Chu W. ; Deng S. Y. Acta Phys. -Chim. Sin. 2010, 26, 345.
doi: 10.3866/PKU.WHXB20100228
徐慧远; 储伟; 邓思玉. 物理化学学报, 2010, 26, 345.
doi: 10.3866/PKU.WHXB20100228
17 Xiao K. ; Qi X. Z. Catal. Sci. Technol. 2013, 3, 1591.
doi: 10.1039/c3cy00063j
18 Wang J. J. ; Chernavskii P. A. J. Catal. 2012, 286, 51.
doi: 10.1016/j.jcat.2011.10.012
19 Yang Y. Z. ; Qi X. Z. ; Wang X. X. Catal. Today. 2016, 270, 101.
doi: 10.1016/j.cattod.2015.06.014
20 Prieto G. Z. ; Beijer S. Angew. Chem. Int. Ed. 2014, 53, 6397.
doi: 10.1002/anie.201402680
21 Liu Y. J. ; Zuo Z. J. Fuel. Process. Technol. 2016, 144, 186.
doi: 10.1016/j.fuproc.2016.01.005
22 Xiang Y. Z. ; Chitry V. J. Am. Chem. Soc. 2013, 135, 7114.
doi: 10.1021/ja402512r
23 Duan X. Chem. Soc. Rev. 2014, 43, 7040.
doi: 10.1039/c4cs00160e
24 Gao W. ; Zhao Y. F. ; Liu J. M. Catal. Sci. Technol. 2013, 31, 324.
doi: 10.1039/c3cy00025g
25 Grey C. P. Science 2008, 321, 113.
doi: 10.1126/science.1157581
26 Ma K. Y. ; Cheng J. P. J. Alloy. Compd. 2016, 679, 277.
doi: 10.1016/j.jallcom.2016.04.059
27 Yuan Z. ; Wang L. ; Wang J. Appl. Catal. B: Environ. 2011, 101, 431.
doi: 10.1016/j.apcatb.2010.10.013
28 Xia S. ; Nie R. ; Lu X. J. Catal. 2012, 296, 1.
doi: 10.1016/j.jcat.2012.12.008
29 Anton J. ; Nebel J. Appl. Catal. A: Gen. 2015, 505, 326.
doi: 10.1016/j.apcata.2015.07.002
30 Su J. J. ; Zhang Z. P. J. Catal. 2016, 336, 94.
doi: 10.1016/j.jcat.2016.01.015
31 Gao P. ; Li F. ; Zhan H. J. J. Catal. 2013, 298, 51.
doi: 10.1016/j.jcat.2012.10.030
32 Wang J. J. ; Chernavskii P. A. J. Catal. 2012, 286, 51.
doi: 10.1016/j.jcat.2011.10.012
33 Deng S. Y. ; Chu W. ; Chu W. J. Nat. Gas. Chem. 2008, 17, 369.
doi: 10.1016/S1003-9953(09)60011-6
34 Alejandre. A. ; Medina F. ; Salagre P. Chem. Mater. 1999, 11, 939.
doi: 10.1021/cm980500f
35 Smith M. L. ; Campos. A. ; Spivey J. J. Catal. Today. 2012, 182, 60.
doi: 10.1016/j.cattod.2011.07.026
36 Frantisek K. ; Tomas R. ; Jana D. J. Solid State Chem. 2006, 179, 812.
doi: 10.1016/j.jssc.2005.12.004
37 Pei Y. ; Jian S. ; Chen Y. RSC Adv. 2015, 5, 76330.
doi: 10.1039/c5ra10804g
38 Byoung K. K. ; Dae S. P. ; Yang S. Y. Catal. Commu. 2012, 24, 90.
doi: 10.1016/j.catcom.2012.03.029
39 Ning X. ; An Z. ; He J. J. Catal. 2016, 340, 236.
doi: 10.1016/j.jcat.2016.05.014
40 Xu Z. P. ; Zeng H. C. J. Phys. Chem. B. 2000, 104, 10206.
doi: 10.1021/jp001963n
41 Cheng. J. ; Yu. J.J. ; Wang. X. P. Energy Fuels 2008, 22, 2131.
doi: 10.1021/cs200294d
42 Velu S. ; Sabde D. P. Chem. Mater. 1998, 10, 3451.
doi: 10.1021/cm980185x
43 Trujillano R. ; Holgado M. J. Phys. B 2006, 373, 267.
doi: 10.1103/Phys.RevB.73.012203
44 Behrens. M. ; Kasatkin. I. Chem. Mater. 2010, 22, 386.
doi: 10.1021/cm9029165
45 Gao P. ; Yang H. J. CO 2Util. 2016, 16, 32.
doi: 10.1016/j.jcou.2016.06.001
46 Cheng X. F. ; Wu B. S. J. Mol. Catal. A: Chem. 2010, 329, 103.
doi: 10.1016/j.molcata.2010.06.024
47 Laan G. P. V. Catal. Rev. 1999, 41, 255.
doi: 10.1081/CR-100101170
48 Matsuzaki T. ; Takeuchi K. ; Hanaoka T. Catal. Today 1996, 28, 251.
doi: 10.1016/0920-5861(95)00245-6
[1] 高鹏, 李枫, 赵宁, 王慧, 魏伟, 孙予罕. 以类水滑石为前驱体的Cu/Zn/Al/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J]. 物理化学学报, 2014, 30(6): 1155-1162.
[2] 汪海有;刘金波;傅锦坤;蔡启瑞. 合成气转化为乙醇的反应机理[J]. 物理化学学报, 1991, 7(06): 681-687.