Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (8): 1589-1598    DOI: 10.3866/PKU.WHXB201704142
论文     
纳米自组装γ-Al2O3孔隙结构的核磁共振表征
王琳.,肖立志.*(),郭龙.,廖广志.,张岩.,戈革.
Nuclear Magnetic Resonance Characterization of Nano Self-Assembly γ-Al2O3 Pore Structure
Lin. WANG,Li-Zhi. XIAO*(),Long. GUO,Guang-Zhi. LIAO,Yan. ZHANG,Ge. GE
 全文: PDF(2833 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

纳米自组装γ-Al2O3具有两种纳米级孔道,可作为适合于大分子扩散的催化剂载体,也可用于页岩气藏模型。表征纳米材料孔隙结构的方法有扫描电镜、氮吸附法及压汞法等,各有局限。本文利用核磁共振弛豫测量对纳米自组装γ-Al2O3孔隙结构进行研究和定量表征,并通过核磁共振实验和数值模拟对纳米自组装γ-Al2O3表面弛豫强度及孔径分布进行探索。结果表明,数值模拟核磁弛豫表征的纳米自组装γ-Al2O3的主体孔径为5-7 nm和30-42 nm,核磁弛豫实验通过误差函数法表征的主体孔径为5-9 nm和29-47 nm。相比于氮吸附仅表征微孔介孔及部分大孔,不能表征大于100 nm孔径,压汞法描述小于10 nm孔径相对不准确等问题,核磁弛豫能够全面表征2.8-315 nm纳米自组装γ-Al2O3的双峰孔隙系统。三个样品S-1、S-2、S-3的横向弛豫时间T2谱小孔大孔波峰的信号幅度比0.603、1.15、1.84直接反映各自的化学小孔大孔氧化铝投料比0.85、1.38、1.7的变化。建立的表征方法可以应用于页岩气微观结构和机理研究中,前景广阔。

关键词: 孔径分布核磁弛豫随机游走误差函数分析纳米自组装    
Abstract:

Nano self-assembled γ-Al2O3, having two kinds of nano-scale pore structures, which can be used as a catalyst carrier suitable for large molecule diffusion and shale gas reservoir models. Characterization of the pore structures in nanomaterials are scanning electron microscopy, nitrogen adsorption method, mercury injection method, etc. These characterization techniques have their own limitations. This paper utilized nuclear magnetic resonance (NMR) relaxation measurements to study and quantitatively characterize the pore structures of nano self-assembled γ-Al2O3. Random walker simulation and error function analysis were used to explore the surface relaxation strength and pore size distribution of nano self-assembled γ-Al2O3. The random walker simulation results show that the main apertures of nano self-assembled γ-Al2O3 are 5-7 nm and 30-42 nm; NMR experiments through error function analysis show that the main apertures of the nano self-assembled material are 5-9 nm and 29-47 nm. Nitrogen adsorption only characterized the microporous, mesoporous, and part of the macroporous structures. The pore diameters greater than 100 nm cannot be detected by the nitrogen adsorption method. The mercury injection method characterizes apertures of size less than 10 nm relatively inaccurately. Nuclear magnetic relaxation can comprehensively characterize bimodal pore system of nano self-assembled γ-Al2O3 of size 2.8-315 nm. As one of the NMR measurements, the T2 spectrum signal amplitude ratio of three samples, S-1, S-2 and S-3 are 0.603, 1.15, 1.84, directly reflect the variety of their micropores and mesopores chemical Al2O3 material ratio 0.85, 1.38, 1.7 respectively. The suggested method can be applied to the investigation for shale gas pore structure and associated mechanisms.

Key words: Pore distribution    Nuclear magnetic relaxation    Radom walker    Error function analysis    Nano self-assambly
收稿日期: 2017-03-01 出版日期: 2017-04-14
中图分类号:  O646  
基金资助: 国家自然科学基金(21427812);“111计划”(B13010)
通讯作者: 肖立志.     E-mail: xiaolizhi@cup.edu.cn; lizhi_xiao@fas.harvard.edu
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王琳.
肖立志.
郭龙.
廖广志.
张岩.
戈革.

引用本文:

王琳, 肖立志, 郭龙, 廖广志, 张岩, 戈革. 纳米自组装γ-Al2O3孔隙结构的核磁共振表征[J]. 物理化学学报, 2017, 33(8): 1589-1598.

Lin. WANG, Li-Zhi. XIAO, Long. GUO, Guang-Zhi. LIAO, Yan. ZHANG, Ge. GE. Nuclear Magnetic Resonance Characterization of Nano Self-Assembly γ-Al2O3 Pore Structure. Acta Physico-Chimica Sinca, 2017, 33(8): 1589-1598.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201704142        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I8/1589

图1  纳米自组装γ-Al2O3外观形貌的SEM
图2  样品氮吸附法吸附等温线及孔径分布
Pore distributionS-1 porosity/%S-2 porosity/%S-3 porosity/%
< 10 nm39.314.825
< 15 nm54.239.150.7
15-20 nm6.619.39.6
20-30 nm1118.712.9
30-60 nm21.819.721.2
60-100 nm635.6
表1  氮吸附法孔隙度对比
图3  样品压汞法压力-饱和度曲线及孔径分布
Pore distributionS-1 porosity/%S-2 porosity/%S-3 porosity/%
< 10 nm18.261316.5
< 15 nm28.232.4736.18
15?20 nm6.917.9312.8
20?30 nm21.7422.3431.64
30?60 nm3323.0213.49
60?100 nm6.4214.245.86
表2  压汞法孔隙度对比
图4  样品T2谱区间孔隙度与累积孔隙度
图5  重构孔径分布曲线
图6  误差函数分析
图7  误差函数法核磁孔径分布
图8  纳米自组装γ-Al2O3数值模拟模型
图9  数值模拟与实验T2分布对比
图10  数值模拟得到的核磁孔径分布
Pore distributionS-1 porosity/%S-2 porosity/%S-3 porosity/%
< 10 nm21.431.448.3
< 15 nm38.0445.758.3
15-20 nm15.026.65.5
20-30 nm27.3910.3
30-60 nm19.51917.9
60-100 nm0128.3
表3  核磁共振法孔隙度对比
图11  核磁共振、氮吸附及压汞孔径分布对比
1 Vartuli J. C. ; Kresge C. T. ; Leonowicz M. E. ; Chu A. S. ; McCullen S. B. ; Johnson I. D. ; Sheppard E. W. Chem. Mater. 1994, 6, 2070.
doi: 10.1021/cm00047a029
2 Beck J. S. ; Vartuli J. C. ; Roth W. J. ; Leonowicz M. E. ; Kresge C. T. ; Schmitt K. D. ; Chu C. T-W. ; Olson D. H. ; Sheppard E. W. ; McCullen S. B. ; Higgins J. B. ; Schlenker J. L. J. Am. Chem. Soc. 1992, 114, 10834.
doi: 10.1021/ja00053a020
3 Imhof A. ; Pine D. J. Nature. 1997, 389, 948.
doi: 10.1038/40105
4 Kresge C. T. ; Leonowicz M. E. ; Roth W. J. ; Vartuli J. C. ; Beck J. S. Nature 1992, 356, 710.
doi: 10.1038/359710a0
5 Zeng S. Petrol. Refin. Eng. 2011, 41, 39.
doi: 10.3969/j.issn.1002-106x.2011.09.011
曾松.. 炼油技术与工程, 2011, 41, 39.
doi: 10.3969/j.issn.1002-106x.2011.09.011
6 Javadpour F. J. Can. Pet. Technol. 2009, 48, 16.
doi: 10.2118/09-08-16-DA
7 Javadpour F. ; Fisher D. ; Unsworth M. J. Can. Pet. Technol. 2007, 46, 55.
doi: 10.2118/07-10-06
8 Zolfaghari, A.; Dehghanpour, H. A Comparative Study of Pore Size Distribution in Gas Shales. In Society of Petroleum Engineers, SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane, Australia, November 9-11, 1-14
9 Elgmati, M. Shale Gas Rock Characterization and 3D Submicron Pore Network Reconstruction. M. S. Dissertation, Missouri University of Science and Technology, Missouri, 2011.
10 Loucks R. G. ; Reed R. M. ; Ruppel S. C. ; Jarvie D. M. J. Sediment. Res. 2009, 79, 848.
doi: 10.2110/jsr.2009.092
11 Chen S. B. ; Zhu Y. M. ; Wang H. Y. ; Liu H. L. ; Wei W. ; Fang J. H. J. China. Coal. Soc. 2012, 3, 438.
doi: 10.13225/j.cnki.jccs.2012.03.007
陈尚斌.; 朱炎铭.; 王红岩.; 刘洪林.; 魏伟.; 方俊华.. 煤炭学报, 2012, 3, 438.
doi: 10.13225/j.cnki.jccs.2012.03.007
12 Chalmers G. R. ; Bustin R. M. ; Power I. M. AAPG Bull. 2012, 96, 1099.
doi: 10.1306/10171111052
13 Rouquerol J. ; Avnir D. ; Fairbridge C. W. ; Everett D. H. ; Haynes J. H. ; Pernicone N. ; Ramsay J. D. F. ; Sing K. S. W. ; Unger K. K. Pure Appl. Chem. 1994, 66, 1739.
doi: 10.1351/pac199466081739
14 Li J. X. ; Zhang L. X. ; Yang L. Mineralogy and Petrology Chengdu: The University of Electronic Science and Technology Press, 2014, pp 50- 170.
李景霞.; 张立新.; 杨丽.矿物岩石学.. 矿物岩石学, 成都: 电子科技大学出版社, 2014, 50- 170.
15 Xiao, L. Z.; Coates, G. R.; Prammer, M. G. NMR Logging Principles and Applications. Gulf Publishing Company: Houston, 1999; pp 10-200.
16 Tiumer A. J. Pet. Technol. 1969, 21, 775.
doi: 10.2118/2045-PA
17 Kenyon W. E. ; Day P. I. ; Straley C. ; Willemsen J. F. SPE Form. Eval. 1988, 3, 622.
doi: 10.2118/15643-PA
18 Gallegos D. P. ; Smith D. M. J. Colloid Interface Sci. 1988, 122, 143.
doi: 10.1016/0021-9797(88)90297-4
19 Straley, C.; Morriss, C. E.; Kenyon, W. E.; Howard, J. J. NMR in Partially Saturated Rocks: Laboratory Insights on Free Fluid Index and Comparison with Borehole Logs. In Society of Petrophysicists and Well-Log Analysts, SPWLA 32nd Annual Logging Symposium, Midland, Texas, June 16-19, 1991, 143-153
20 Sigal R. F. ; Odusina E. Petrophysics. 2010, 52, 32.
21 Hinai A. A. ; Rezaee R. ; Esteban L. ; Labani M. J. Unconvent. Oil Gas Resources 2014, 8, 13.
doi: 10.1016/j.juogr.2014.06.002
22 Wang D. C. Sci. China Ser. B-Chem. 2009, 52, 2114.
doi: 10.1007/s11426-009-0290-x
23 Straley C. ; Rossini D. ; Vinegar H. ; Tutunjian P. ; Morriss C. Log Anal. 1997, 38, 84.
24 Kleinberg R. L. ; Vinegar H. J. Log Anal. 1996, 37 (6), 20.
25 Liu T. Y. ; Xiao L. Z. ; Fu R. S. Chin. J. Geophys.-Chin. Ed. 2004, 47, 663.
doi: 10.3321/j.issn:0001-5733.2004.04.017
刘堂晏.; 肖立志.; 傅容珊.. 地球物理学报, 2004, 47, 663.
doi: 10.3321/j.issn:0001-5733.2004.04.017
26 Martin, P.; Dacy, J. Effective Qv by NMR Core Tests. In Society of Petrophysicists and Well-Log Analysts, SPWLA 45th Annual Logging Symposium, Noordwijk, Netherlands, June 6-9, 2004, 1-14
27 Toumelin E. ; Torres-Verdin C. ; Sun B. Q. ; Dunn K J. J. Magn. Reson. 2007, 188, 83.
doi: 10.1016/j.jmr.2007.05.024
28 Toumelin E. ; Torres-Verdin C. ; Chen S. SPE Reserv. Eval. Eng. 2003, 6, 234.
doi: 10.2118/85635-PA
29 Carneiro, G.; Souza, A.; Boyd, A.; Schwartz, L.; Song, Y. Q.; Azeredo, R.; Trevizan, W.; Santos, B.; Rios, E.; Machado, V. Evaluating Pore Space Connectivity by NMR Diffusive Coupling. In Society of Petrophysicists and Well-Log Analysts, SPWLA 55th Annual Logging Symposium, Abu Dhabi, United Arab Emirates, May 18-22, 2014, 1-7.
[1] 杜雪莲, 丛野, 姜露, 李轩科, 崔正威, 董志军, 袁观明, 张江. 碳化硅衍生碳/球形天然石墨复合材料的制备及其结构调控[J]. 物理化学学报, 2015, 31(3): 583-588.
[2] 孙刚伟, 宋文华, 刘小军, 乔文明, 凌立成. 基于离子尺寸与孔径关系的不对称电容行为[J]. 物理化学学报, 2011, 27(02): 449-454.
[3] 吴健, 王瑜, 黄峰, 杨阳, 孟长功. ZSM-5晶体内SnO2团簇的热扩散法合成及表征[J]. 物理化学学报, 2010, 26(06): 1705-1710.
[4] 乐园;陈建峰;汪文川. 用实验和模拟计算确定SiO2空心微球的孔径分布[J]. 物理化学学报, 2004, 20(11): 1303-1307.
[5] 邵晓红;张现仁;汪文川. 密度泛函与分子模拟计算介孔孔径分布比较[J]. 物理化学学报, 2003, 19(06): 538-542.
[6] 董松涛;李宣文;李大东;石亚华;聂红;康小洪. 水热处理USY二次孔形成规律研究[J]. 物理化学学报, 2002, 18(03): 201-206.
[7] 刘振宇;郑经堂;王茂章;张碧江. PAN基活性炭纤维的氮吸附研究[J]. 物理化学学报, 2001, 17(07): 594-599.
[8] 王文涛,钟邦克. 以多孔钛片为载体的氧化铝膜的制备和表征[J]. 物理化学学报, 1996, 12(01): 85-90.