注册
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
物理化学学报 >> 2017,Vol.33>> Issue(8)>> 1589-1598     doi: 10.3866/PKU.WHXB201704142         English Abstract
纳米自组装γ-Al2O3孔隙结构的核磁共振表征
王琳,肖立志, 郭龙, 廖广志, 张岩, 戈革
中国石油大学, 油气资源与工程国家重点实验室, 北京 102249
Full text: PDF (2833KB) HTML 输出: BibTeX | EndNote (RIS)

纳米自组装γ-Al2O3具有两种纳米级孔道,可作为适合于大分子扩散的催化剂载体,也可用于页岩气藏模型。表征纳米材料孔隙结构的方法有扫描电镜、氮吸附法及压汞法等,各有局限。本文利用核磁共振弛豫测量对纳米自组装γ-Al2O3孔隙结构进行研究和定量表征,并通过核磁共振实验和数值模拟对纳米自组装γ-Al2O3表面弛豫强度及孔径分布进行探索。结果表明,数值模拟核磁弛豫表征的纳米自组装γ-Al2O3的主体孔径为5-7 nm和30-42 nm,核磁弛豫实验通过误差函数法表征的主体孔径为5-9 nm和29-47 nm。相比于氮吸附仅表征微孔介孔及部分大孔,不能表征大于100 nm孔径,压汞法描述小于10 nm孔径相对不准确等问题,核磁弛豫能够全面表征2.8-315 nm纳米自组装γ-Al2O3的双峰孔隙系统。三个样品S-1、S-2、S-3的横向弛豫时间T2谱小孔大孔波峰的信号幅度比0.603、1.15、1.84直接反映各自的化学小孔大孔氧化铝投料比0.85、1.38、1.7的变化。建立的表征方法可以应用于页岩气微观结构和机理研究中,前景广阔。



关键词: 孔径分布   核磁弛豫   随机游走   误差函数分析   纳米自组装  
收稿日期 2017-03-01 修回日期 2017-04-05 网出版日期 2017-04-14
通讯作者: 肖立志 Email: xiaolizhi@cup.edu.cn,lizhi_xiao@fas.harvard.edu

基金资助: 国家自然科学基金(21427812)和“111计划”(B13010)资助的项目

引用文本: 王琳, 肖立志, 郭龙, 廖广志, 张岩, 戈革. 纳米自组装γ-Al2O3孔隙结构的核磁共振表征[J]. 物理化学学报, 2017,33(8): 1589-1598.
WANG Lin, XIAO Li-Zhi, GUO Long, LIAO Guang-Zhi, ZHANG Yan, GE Ge. Nuclear Magnetic Resonance Characterization of Nano Self-Assembly γ-Al2O3 Pore Structure[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1589-1598.    doi: 10.3866/PKU.WHXB201704142

(1) Vartuli, J. C.; Kresge, C. T.; Leonowicz, M. E.; Chu, A. S.; McCullen, S. B.; Johnson, I. D.; Sheppard, E. W. Chem. Mater. 1994, 6, 2070. doi: 10.1021/cm00047a029
(2) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834. doi: 10.1021/ja00053a020
(3) Imhof, A.; Pine, D. J. Nature. 1997, 389, 948. doi: 10.1038/40105
(4) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 356, 710. doi: 10.1038/359710a0
(5) Zeng, S. Petrol. Refin. Eng. 2011 , 41, 39. [曾松. 炼油技术与工程, 2011, 41, 39.] doi: 10.3969/j.issn.1002-106x.2011.09.011
(6) Javadpour, F. J. Can. Pet. Technol. 2009, 48, 16. doi: 10.2118/09-08-16-DA
(7) Javadpour, F.; Fisher, D.; Unsworth, M. J. Can. Pet. Technol. 2007, 46, 55. doi: 10.2118/07-10-06
(8) Zolfaghari, A.; Dehghanpour, H. A Comparative Study of Pore Size Distribution in Gas Shales. In Society of Petroleum Engineers, SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane, Australia, November 9-11, 1-14
(9) Elgmati, M. Shale Gas Rock Characterization and 3D Submicron Pore Network Reconstruction. M. S. Dissertation, Missouri University of Science and Technology, Missouri, 2011.
(10) Loucks, R. G.; Reed, R. M.; Ruppel, S. C.; Jarvie, D. M. J. Sediment. Res. 2009, 79, 848. doi: 10.2110/jsr.2009.092
(11) Chen, S. B.; Zhu, Y. M.; Wang, H. Y.; Liu, H. L.; Wei W.; Fang, J. H. J. China. Coal. Soc. 2012, 3, 438. [陈尚斌, 朱炎铭, 王红岩, 刘洪林, 魏伟, 方俊华. 煤炭学报, 2012, 3, 438.] doi: 10.13225/j.cnki.jccs.2012.03.007
(12) Chalmers, G. R.; Bustin, R. M.; Power, I. M. AAPG Bull. 2012, 96, 1099. doi: 10.1306/10171111052
(13) Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. H.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K. Pure Appl. Chem. 1994, 66, 1739. doi: 10.1351/pac199466081739
(14) Li, J. X.; Zhang, L. X.; Yang, L. Mineralogy and Petrology. The University of Electronic Science and Technology Press: Chengdu, 2014; pp 50-170. [李景霞, 张立新, 杨丽. 矿物岩石学. 成都: 电子科技大学出版社, 2014: 50-170.]
(15) Xiao, L. Z.; Coates, G. R.; Prammer, M. G. NMR Logging Principles and Applications. Gulf Publishing Company: Houston, 1999; pp 10-200.
(16) Tiumer, A. J. Pet. Technol. 1969, 21, 775. doi: 10.2118/2045-PA
(17) Kenyon, W. E.; Day, P. I.; Straley, C.; Willemsen, J. F. SPE Form. Eval. 1988, 3, 622. doi: 10.2118/15643-PA
(18) Gallegos, D. P.; Smith, D. M. J. Colloid Interface Sci. 1988, 122, 143. doi: 10.1016/0021-9797(88)90297-4
(19) Straley, C.; Morriss, C. E.; Kenyon, W. E.; Howard, J. J. NMR in Partially Saturated Rocks: Laboratory Insights on Free Fluid Index and Comparison with Borehole Logs. In Society of Petrophysicists and Well-Log Analysts, SPWLA 32nd Annual Logging Symposium, Midland, Texas, June 16-19, 1991, 143-153
(20) Sigal, R. F.; Odusina, E. Petrophysics. 2010, 52, 32
(21) Hinai, A. A.; Rezaee, R.; Esteban, L.; Labani, M. J. Unconvent. Oil Gas Resources 2014, 8, 13. doi: 10.1016/j.juogr.2014.06.002
(22) Wang, D. C. Sci. China Ser. B-Chem. 2009, 52, 2114. doi: 10.1007/s11426-009-0290-x
(23) Straley, C.; Rossini, D.; Vinegar, H.; Tutunjian, P.; Morriss, C. Log Anal. 1997, 38, 84.
(24) Kleinberg, R. L.; Vinegar, H. J. Log Anal. 1996, 37, 6, 20
(25) Liu, T. Y.; Xiao, L. Z.; Fu, R. S. Chin. J. Geophys.-Chin. Ed. 2004, 47, 663. [刘堂晏, 肖立志, 傅容珊. 地球物理学报, 2004, 47, 663.] doi: 10.3321/j.issn:0001-5733.2004.04.017
(26) Martin, P.; Dacy, J. Effective Qv by NMR Core Tests. In Society of Petrophysicists and Well-Log Analysts, SPWLA 45th Annual Logging Symposium, Noordwijk, Netherlands, June 6-9, 2004, 1-14
(27) Toumelin, E.; Torres-Verdin, C.; Sun, B. Q.; Dunn, K J. J. Magn. Reson. 2007 , 188, 83. doi: 10.1016/j.jmr.2007.05.024
(28) Toumelin, E.; Torres-Verdin, C.; Chen, S. SPE Reserv. Eval. Eng. 2003, 6, 234. doi: 10.2118/85635-PA
(29) Carneiro, G.; Souza, A.; Boyd, A.; Schwartz, L.; Song, Y. Q.; Azeredo, R.; Trevizan, W.; Santos, B.; Rios, E.; Machado, V. Evaluating Pore Space Connectivity by NMR Diffusive Coupling. In Society of Petrophysicists and Well-Log Analysts, SPWLA 55th Annual Logging Symposium, Abu Dhabi, United Arab Emirates, May 18-22, 2014, 1-7.

版权所有 © 2006-2016 物理化学学报编辑部
地址:北京大学化学学院 邮政编码:100871
服务热线:(010)62751724 传真:(010)62756388 Email:whxb@pku.edu.cn
^ Top