Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (8): 1709-1714    DOI: 10.3866/PKU.WHXB201704171
论文     
气相亚硝酸烷基二酯电子轰击电离解离机理研究
汪凌萱,祝华彤,祖莉莉*()
Studying ionization and decomposition mechanism of alkyl dinitrites by mass spectrometry
Ling-Xuan WANG,Hua-Tong ZHU,Li-Li ZU*()
 全文: PDF(1583 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

亚硝酸烷基二酯(R2C(ONO)(CH2nC(ONO)R2)因其双官能团的特殊性而具有极高活性,在大气中极易产生烷氧自由基和氮氧化物,从而导致温室效应和光化学污染。因此研究亚硝酸烷基二酯的解离机理对理解其在大气中的光化学及热化学过程具有重要意义。本文采用气质联用(GC-MS)等方法研究了6种二酯(1,2-、1,3-亚硝酸丙二酯,1,2-、2,3-和1,4-亚硝酸丁二酯和1,5-亚硝酸戊二酯)在70 eV电子轰击下的解离过程,发现断裂碎片对二酯的结构具有特征性指示作用。我们发现除常见O―NO键断裂产生的NO+碎片离子峰外,同时也观测到因α C―C键断裂产生的R2C(ONO)+碎片离子峰。通过对不同产物碎片所对应的解离路径的分析得出亚硝酸烷基二酯不同于其热解及光解的解离机理,即其直接发生O―NO键或C―C键的断裂。

关键词: 亚硝酸烷基二酯质谱电子轰击解离机理气相反应    
Abstract:

Alkyl dinitrites with two functional groups, R2C(ONO)(CH2)nC(ONO)R2, can easily produce alkoxy radicals and nitric oxide in the atmosphere. Their high activity has led to issues such as photochemical air pollution and the greenhouse effect. Hence, unraveling the decomposition mechanism of alkyl dinitrites is of great significance in understanding their photochemical and thermochemical roles in the atmosphere. In this work, the dissociation process of six alkyl dinitrites was investigated by mass spectrometry under the electron impact energy of 70 eV. Our results indicated that the ruptured fragments had characteristic directivity for the structures of alkyl dinitrites. We detected not only the NO+ fragment ion, due to the common breakage of O-NO bond, but also R2C(ONO)+ resulting from the breakage of α C-C bond in the electron ionization mass spectra. The dissociation mechanism of alkyl dinitrites in which the O-NO or C-C bond directly dissociates is different from photolysis and pyrolysis.

Key words: Alkyl dinitrites    Mass spectrum    Electron impact    Decomposition mechanism    Gas-phase reaction
收稿日期: 2017-03-16 出版日期: 2017-04-17
中图分类号:  O643.1  
基金资助: 国家自然科学基金(21373033);国家自然科学基金(21173024)
通讯作者: 祖莉莉     E-mail: zull@mail.bnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪凌萱
祝华彤
祖莉莉

引用本文:

汪凌萱,祝华彤,祖莉莉. 气相亚硝酸烷基二酯电子轰击电离解离机理研究[J]. 物理化学学报, 2017, 33(8): 1709-1714.

Ling-Xuan WANG,Hua-Tong ZHU,Li-Li ZU. Studying ionization and decomposition mechanism of alkyl dinitrites by mass spectrometry. Acta Physico-Chimica Sinca, 2017, 33(8): 1709-1714.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201704171        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I8/1709

图1  六种亚硝酸烷基二酯的总离子流图
DinitritesRTBPaDiolsBPa
1, 2-propyl dinitrite2.41116.81, 2-propanediol187.2
1, 3-propyl dinitrite2.99125.41, 3-propanediol214.0
2, 3-butyl dinitrite2.88134.72, 3-butanediol185.2
1, 2-butyl dinitrite3.28141.81, 2-butanediol193.6
1, 4-butyl dinitrite4.17148.51, 4-butanediol228.0
1, 5-pentyl dinitrite5.03171.61, 5-pentanediol240.5
表1  亚硝酸烷基二酯的气相色谱保留时间(RT, min)和预测沸点(BP, ℃)
图2  1, 2-亚硝酸丙二酯(a)、1, 2-亚硝酸丁二酯(b)和2, 3-亚硝酸丁二酯(c)的电子轰击质谱图
图3  B3LYP/6-311++G(d, p)水平的1, 2-亚硝酸丙二酯最低构象的分子(a)及离子(b) NBO电荷分布图
Mrm/z
(29)
m/z
(30)
m/z
(41)
m/z
(42)
m/z
(43)
m/z
(55)
m/z
(57)
m/z
(60)
m/z
(71)
m/z
(74)
m/z
(85)
m/z
(88)
m/z
(102)
m/z
(116)
m/z
(133)
m/z
(147)
134201000.62.122?7.610?6.1?1.30.1???
148321003.12.25.70.445236.9??7.50.10.3?0.6
148131001.7?520.21.30.23.714??2.5??0.3
148221000.63.4160.710540.12.2?0.32.9?1.2?
148221006.75.47.80.86.8577.60.6?1.1????
16273864631541611100252525?0.2???
表2  亚硝酸烷基二酯分子量及其质谱特征离子相对丰度表
图4  1, 3-亚硝酸丙二酯(a)、1, 4-亚硝酸丁二酯(b)和1, 5-亚硝酸戊二酯(c)的电子轰击质谱图
DinitritesAIEVIPCharacter??i
1, 2-propyl dinitrite9.48512.229σONO12.229
1, 2-butyl dinitrite9.38012.195σONO12.195
2, 3-butyl dinitrite9.34412.155σCH3CHONO12.155
1, 3-propyl dinitrite9.76512.277σONO12.277
1, 4-butyl dinitrite9.64512.273σONO12.273
1, 5-pentyl dinitrite9.47712.227σCH2ONO12.227
表3  B3LYP/6-311++G(d, p)水平的亚硝酸烷基二酯的绝热电离能(AIE)、OVGF/6-311++G(d, p)水平的垂直电离势(VIP)、分子轨道特征以及其能量的计算
图5  B3LYP/6-311++G(d, p)水平的1, 5-亚硝酸戊二酯最低构象的分子(a)及离子(b) NBO电荷分布图
1 Orlando J. J. ; Tyndall G. S. ; Wallington T. J. Chem. Rev. 2003, 103 (12), 4657.
doi: 10.1021/cr020527p
2 Atkinson R. ; Arey J. Chem. Rev. 2003, 103 (12), 4605.
doi: 10.1021/cr0206420
3 Iglesias E. ; Casado J. Int. Rev. Phys. Chem. 2002, 21 (1), 37.
doi: 10.1080/01442350110092693
4 Fu Y. ; Mou Y. ; Lin B. ; Liu L. ; Guo Q. X. J. Phys. Chem. A 2002, 106 (51), 12386.
doi: 10.1021/jp0217029
5 Wei L. X. ; Yang B. ; Wang J. ; Huang C. Q. ; Sheng L. S. ; Qi F. Acta Phys. -Chim. Sin. 2006, 22 (8), 987.
doi: 10.3866/PKU.WHXB20060816
卫立夏; 杨斌; 王晶; 黄超群; 盛六四; 齐飞. 物理化学学报, 2006, 22 (8), 987.
doi: 10.3866/PKU.WHXB20060816
6 Kuhn L. P. ; DeAngelis L. J. Am. Chem. Soc. 1954, 76 (2), 328.
doi: 10.1021/ja01631a003
7 Kuhn L. P. ; Wright R. ; DeAngelis L. J. Am. Chem. Soc. 1956, 78 (12), 2719.
doi: 10.1021/ja01593a020
8 Furlan A. Chem. Phys. Lett. 1999, 309 (3-4)), 157.
doi: 10.1016/S0009-2614(99)00692-2
9 Wang L. ; Zu L. Phys. Chem. Chem. Phys. 2016, 18 (36), 25249.
doi: 10.1039/C6CP03049A
10 He X. D. ; Xu C. S. ; Chu Y. Q. ; Ding C. F. Acta Chim. Sin. 2013, 71 (03), 397.
doi: 10.6023/a12110904
何小丹; 许崇晟; 储艳秋; 丁传凡. 化学学报, 2013, 71 (03), 397.
doi: 10.6023/a12110904
11 Nie, J.; Yu, G.; Song, Z.; Wang, X.; Li, Z. G.; She, Y. B.; Lee, M. R.Anal. Methods 2016, No. 5. doi: 10.1039/C6AY03076A
12 Bal T. S. ; Gutteridge D. R. ; Hiscutt A. A. ; Johnson B. ; Oxley I. J. Forensic Sci. Soc. 1988, 28 (3), 185.
doi: 10.1016/S0015-7368(88)72828-5
13 Irion M. ; Selinger A. ; Castleman A. ; Ferguson E. ; Weil K. Chem. Phys. Lett. 1988, 147 (1), 33.
doi: 10.1016/0009-2614(88)80219-7
14 Ripani L. ; Nichetti D. ; Rossi A. ; Schiavone S. J. -Can. Soc. Forensic Sci. 1999, 32 (4), 141.
doi: 10.1080/00085030.1999.10757495
15 Marcus P. ; Platzner I. ; Bar I. ; Rosenwaks S. Int. J. Mass Spectrom. Ion Processes 1988, 82 (3), 319.
doi: 10.1016/0168-1176(88)80023-5
16 Rosenberg M. ; Minitti M. P. ; Rusteika N. ; Bisgaard C. Z. ; Deb S. ; Weber P. M. ; S?lling T. I. J. Phys. Chem. A 2010, 114 (26), 7021.
doi: 10.1021/jp102393g
17 Blatt, A. H. Organic Syntheses; Wiley: New York, 1966.
18 Allen, A. D. J. Chem. Soc. 1954, No. 0, 1968. doi: 10.1039/JR9540001968
19 Abdel-Hay K. M. ; De Ruiter J. ; Smith F. ; Alsegiani A. S. ; Thaxton-Weissenfluh A. ; Clark C. R. J. Pharm. Biomed. Anal. 2016, 125, 360.
doi: 10.1016/j.jpba.2016.04.012
20 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision E.01; Gaussian, Inc: Wallingford CT, 2009.
21 Zhao R. ; Shukla A. K. ; Futrell J. H. Int. J. Mass Spectrom. 1999, 185, 847.
doi: 10.1016/S1387-3806(98)14216-1
22 Ripani L. ; Nichetti D. ; Rossi A. ; Schiavone S. Can. Soc. Forensic Sci. J. 1999, 32 (4), 141.
doi: 10.1080/00085030.1999.10757495
23 Zhao C. H. ; Tong S. R. ; Ge M. F. ; Sun Z. Acta Phys.-Chim. Sin. 2015, 31 (1), 23.
doi: 10.3866/PKU.WHXB201410311
赵春红; 佟胜睿; 葛茂发; 孙政. 物理化学学报, 2015, 31 (1), 23.
doi: 10.3866/PKU.WHXB201410311
24 McLafferty, F. W.; Ture?ek, F. Interpretation of Mass Spectra, 4thed.; University science books: Mill Valley, CA, USA, 1993.
25 Polá?ek M. ; Ture?ek F. J. Phys. Chem. A 2001, 105 (8), 1371.
doi: 10.1021/jp002758a
26 Rocha B. S. ; Gago B. ; Barbosa R. M. ; Cavaleiro C. ; Laranjinha J. Free Radical Biol. Med. 2015, 82, 160.
doi: 10.1016/j.freeradbiomed.2015.01.021
27 Charlebois J. P. ; DeLeon R. L. ; Garvey J. F. J. Phys. Chem. A 2000, 104 (29), 6799.
doi: 10.1021/jp001594v
28 Wang D. ; Li S. ; Li Y. ; Zheng S. ; Ding C. ; Gao Y. ; Chen W. J. Electron. Spectrosc. Relat. Phenom. 1996, 82 (1-2), 19.
doi: 10.1016/S0368-2048(96)032-0
[1] 刘宁亮, 沈环. 飞秒脉冲作用下氯丙烯的多光子解离和电离动力学[J]. 物理化学学报, 2017, 33(3): 500-505.
[2] 张恒, 于惠梅, 徐朝和, 张明辉, 潘秀红, 高彦峰. 石墨烯氧化过程中的热分析-质谱以及脉冲热分析方法研究[J]. 物理化学学报, 2016, 32(7): 1634-1638.
[3] 傅中华, 龙开明, 刘雪梅, 韩军, 汤磊. 同位素稀释质谱法分析铀样品中微量钍[J]. 物理化学学报, 2015, 31(Suppl): 14-18.
[4] 孙中发, 高治, 吴向坤, 唐国强, 周晓国, 刘世林. N2O+离子B2П态的光谱与光解离动力学[J]. 物理化学学报, 2015, 31(5): 829-835.
[5] 赵春红, 佟胜睿, 葛茂发, 孙政. FC(O)SNCO的电子结构和光电离解离过程[J]. 物理化学学报, 2015, 31(1): 23-31.
[6] 朱云城, 王二琼, 马国林, 康彦彪, 赵林泓, 刘扬中. 铜转运蛋白C端金属结合域与Ag+及Hg2+的相互作用[J]. 物理化学学报, 2014, 30(1): 1-7.
[7] 陈琛, 储艳秋, 戴新华, 方向, 丁传凡. 缓激肽多肽片段间非共价作用的质谱研究[J]. 物理化学学报, 2013, 29(06): 1336-1343.
[8] 孔祥蕾. 团簇尺寸对奇数和偶数磷团簇离子信号强度差异的影响[J]. 物理化学学报, 2013, 29(03): 486-490.
[9] 凌星, 丁传凡. 同轴式电化学电喷雾质谱离子源研究蒽电化学衍生十二胺[J]. 物理化学学报, 2012, 28(11): 2616-2624.
[10] 王青, 储艳秋, 张开, 戴新华, 方向, 丁传凡. 碱金属离子对甘氨酸五肽气相解离过程的影响[J]. 物理化学学报, 2012, 28(04): 971-977.
[11] 张蓉蓉, 秦朝朝, 龙金友, 杨明晖, 张冰. 丙烯酸分子的激发态超快预解离动力学[J]. 物理化学学报, 2012, 28(03): 522-527.
[12] 吴曼曼, 唐小锋, 牛铭理, 周晓国, 戴静华, 刘世林. 氯甲烷分子在13至17 eV激发能量范围内的电离解离[J]. 物理化学学报, 2011, 27(12): 2749-2754.
[13] 甄承, 唐小锋, 周晓国, 刘世林. 离子速度成像在阈值光电子-光离子符合测量中的应用和改进[J]. 物理化学学报, 2011, 27(07): 1574-1578.
[14] 何小丹, 姜丹, 陈琛, 储艳秋, 丁传凡, 翁志洁, 李建其. 抗抑郁化合物SIPI5358与环糊精形成的非共价复合物[J]. 物理化学学报, 2010, 26(10): 2604-2612.
[15] 马嘉璧, 吴晓楠, 赵艳霞, 何圣贵, 丁迅雷. 钒氧阴离子团簇与小分子碳氢化合物反应的实验和理论研究[J]. 物理化学学报, 2010, 26(07): 1761-1767.