Please wait a minute...
物理化学学报  2017, Vol. 33 Issue (7): 1310-1323    DOI: 10.3866/PKU.WHXB201704172
专论     
镍族金属团簇在催化加氢过程中的应用
韩波,程寒松*()
Nickel Family Metal Clusters for Catalytic Hydrogenation Processes
Bo HAN,Han-Song CHENG*()
 全文: PDF(2879 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

贵金属纳米颗粒具有优异的催化活性,是异相催化反应中的重要角色。作为一种理想的研究模型,气相金属团簇被广泛应用于在原子和分子尺度探究催化反应的机理。在本专论中,我们将本课题组近年来关于氢气在镍族金属团簇上的解离吸附进行了回顾。首先,我们对比了不同金属团簇的结构演化规律和相对稳定性。随后,我们系统研究了H2分子在金属团簇上的解离吸附行为,揭示了不同金属对H―H键的解离能力。为了表征不同金属团簇的催化活性,我们定义了两个关键参数:氢气的解离吸附能(ΔECE)和H原子的连续脱附能(ΔEDE)。结果显示,随着H覆盖度的增大,ΔECE和ΔEDE都呈现显著的下降。由于在实际的催化反应中,氢气总是维持在一定的分压下,这就意味着催化剂金属应该总是处于较高的H覆盖度下。因此,通过处于H饱和状态下的ΔECE和ΔEDE来评估金属团簇的催化能力是合理可行的。我们发现,在饱和H吸附状态下,每一个Pt原子可以容纳4个H原子,而每一个Pd或Ni原子则只能吸附2个H原子。考虑到H原子在这些团簇上的脱附能力相当,Pt团簇相对较高的H吸附量将极大提高其在加氢过程中的催化活性。最后,我们系统研究了带电状态对Pt团簇催化性能的影响规律。结果显示,在H覆盖度较低时,H2分子的解离以及H原子的脱附过程受Pt团簇带电状态的影响较大。在饱和H吸附时,由于大量H原子的吸附,电荷的影响被平均化到每个Pt―H键上,导致ΔECE和ΔEDE都收敛到一个非常小的区域。此外,当团簇的尺寸增大时,其所带的电荷被大量的Pt原子分摊,每个Pt原子仅携带极少的电荷,使得电荷的影响已经可以忽略。

关键词: 团簇过渡金属催化加氢饱和氢吸附带电状态密度泛函理论    
Abstract:

Nanoparticles of precious metals play an important role in many heterogeneous catalytic reactions due to their excellent catalytic performance. As an idealized model, gas phase metal clusters have been extensively utilized to understand catalytic mechanisms at a molecular level. Here we provide an overview of our recent studies on H2 dissociative chemisorption on nickel family clusters. The structure evolution and the stability of the metal clusters were first compared. H2 dissociation on the clusters was then carefully addressed to understand the capability of metal clusters to break the H-H bond. Two key parameters, the dissociative chemisorption energy (ΔECE) and the H sequential desorption energy (ΔEDE), were employed to characterize the catalytic activity of metal clusters. Our results show that both ΔECE and ΔEDE decline significantly as the H coverage increases. Since the catalyst is in general covered entirely by H atoms and H2 molecules in a typical hydrogenation process, and maintained at a pre-determined pressure of H2 gas, we can rationally use the calculated ΔECE and ΔEDE values at full H saturation to address the activity of metal clusters. Our results suggest that at full H coverage, each Pt atom is essentially capable of adsorbing 4 H atoms, while each Ni or Pd atom can only accommodate 2 H atoms. Considering the similar values of H desorption energies on Pt and Pd clusters, the higher average H capacity per Pt atom could probably lead to a faster reaction rate because more active H atoms are produced on the Pt catalyst particles in the hydrogenation process. Finally, the charge sensitivity of the key catalytic properties of Pt clusters for hydrogenation was systematically evaluated. The results show that the dissociation of H2 and H desorption are strongly correlated to the charge state of the Pt clusters at low H coverage. However, at high H-capacities, both ΔECE and ΔEDE fall into a narrow range, suggesting that the charge can be readily dispersed and that the Pt-H bonds average the interaction between clusters and H atoms. As a result, the H-capacities on charged clusters were found to be similar as the cluster size increased; in case of sufficiently large clusters, the reactivity of a fully saturated cluster was no longer sensitive to its charge state.

Key words: Clusters    Transition metal    Catalytic hydrogenation    Full H saturation    Charge state    Density functional theory
收稿日期: 2016-12-12 出版日期: 2017-04-17
中图分类号:  O641  
基金资助: 国家自然科学基金(21473164);国家自然科学基金(21203169);国家自然科学基金(21233006);中国地质大学(武汉)中央高校基本科研业务费以及空气与化学品公司资助
通讯作者: 程寒松     E-mail: chghs2@gmail.com
作者简介: HAN Bo is an Associate Professor of Chemistry at China University of Geosciences Wuhan. His current research interests focus on computational chemistry and materials, including surface chemistry, energy materials, homogeneous and heterogeneous catalysis|CHENG Han-Song is a Professor of Chemistry at China University of Geosciences Wuhan. In 2009, he was inducted into the "National 1000 Talents Plan" program in China and has served as the director of Sustainable Energy Laboratory at the university since then. His research interest lies in the area of first principles simulations and experimental development of novel materials for gas storage and separation, catalysis, battery electrolytes, and proton exchange membrane fuel cells. He is an author of over 200 peer-reviewed publications and an inventor of over 50 U.S. patents and patent applications
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韩波
程寒松

引用本文:

韩波,程寒松. 镍族金属团簇在催化加氢过程中的应用[J]. 物理化学学报, 2017, 33(7): 1310-1323.

Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes. Acta Physico-Chimica Sinca, 2017, 33(7): 1310-1323.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201704172        http://www.whxb.pku.edu.cn/CN/Y2017/V33/I7/1310

Fig 1  Optimized structures for Pdn clusters (n=2?15)52. Reprinted with permission from Wiley Periodicals, Inc.
Fig 2  Optimized configurations of (a) Ptn clusters and (b) Nin clusters (n=2?9, 13). The unit of the bond distance is ? (1 ?=10?10 m).8, 51 Adapted with permission from Springer-Verlag.
Fig 3  Comparison of the calculated bond length and binding energies of small Ni, Pd and Pt clusters8. Adapted with permission from Springer-Verlag.
Fig 4  Energy diagram of H2 dissociative chemisorption and diffusion on the Pt2 cluster. The unit of the bond distance is ?13.
Fig 5  Energy diagram of H2 dissociation and diffusion on the Pd6 octahedral cluster. The unit of the bond distance is ?.12 Adapted with permission from Royal Society of Chemistry.
Fig 6  Calculated (a) ΔECE, (b) ΔEDE, and the loss of the Hirshfeld charges of Pt clusters with respect to H coverage13. Adapted with permission from American Chemical Society.
Fig 7  (a) Fully optimized structures of H2 sequential dissociative chemisorption on a Pt4 cluster; (b) calculated H-H distance distribution for Pt4H16 and Pt4H18, respectively13. Adapted with permission from American Chemical Society.
Fig 8  Comparison of the calculated (a) ΔECE and (b) ΔEDE on Pt clusters at low and full H coverages13. Data collected from Ref.13.
Fig 9  (a) Number of H atoms adsorbed on Ptn cluster at fully H coverage; (b) optimized structures of Pt hydrides13. Adapted with permission from American Chemical Society
Fig 10  Optimized structures of Pdn and Nin clusters at full H coverage8, 12. Adapted with permission from Springer-Verlag and Royal Society of Chemistry.
Fig 11  Comparison on (a) the threshold of H2 dissociative chemisorption energy, (b) the threshold of H desorption energy and (c) the maximum H-capacity of small Ni, Pd and Pt clusters8. Adapted with permission from Springer-Verlag.
Fig 12  (a) Calculated electron density difference of Pt4+, Pt4 and Pt4?; (b) d-band center of the clusters with various sizes and charges61. Reprinted with permission from American Chemical Society.
Fig 13  Reaction pathway of H2 activated by (a) the Pt4, (b) the Pt4+ and (c) the Pt4? cluster. The unit of the bond distances is ?.61 Reprinted with permission from American Chemical Society.
Fig 14  Calculated energy diagram of H2 molecule dissociative chemisorption on the Pt4 clusters61. Adapted with permission from American Chemical Society.
Fig 15  Calculated H-H distance distribution function g(r) of the fully H saturated structures, obtained by tabulating all the H?H distances at each step of the MD trajectories61. Reprinted with permission from American Chemical Society.
Fig 16  Calculated H2 average dissociative chemisorption energy (a), H sequential desorption energy (b), and the loss of the Hirshfeld charges (c)61. Adapted with permission from American Chemical Society.
Fig 17  H/Pt ratio versus cluster size at full saturation61. Adapted with permission from American Chemical Society.
1 Chen A. ; Holt-Hindle P. Chem. Rev. 2010, 110, 3767.
doi: 10.1021/cr9003902
2 Astruc D. Inorg. Chem. 2007, 46, 1884.
doi: 10.1021/ic062183h
3 Biffis A. ; Zecca M. ; Basato M. J. Mol. Catal. A: Chem. 2001, 173, 249.
doi: 10.1016/S1381-1169(01)00153-4
4 Lang S. M. ; Bernhardt T. M. Phys. Chem. Chem. Phys. 2012, 14, 9255.
doi: 10.1039/c2cp40660h
5 Tao F. ; Grass M. E. ; Zhang Y. ; Butcher D. R. ; Renzas J. R. ; Liu Z. ; Chung J. Y. ; Mun B. S. ; Salmeron M. ; Somorjai G. A. Science 2008, 322, 932.
doi: 10.1126/science.1164170
6 Lim B. ; Jiang M. ; Camargo P. H. C. ; Cho E. C. ; Tao J. ; Lu X. ; Zhu Y. ; Xia Y. Science 2009, 324, 1302.
doi: 10.1126/science.1170377
7 Imaoka T. ; Kitazawa H. ; Chun W. J. ; Omura S. ; Albrecht K. ; Yamamoto K. J. Am. Chem. Soc. 2013, 135, 13089.
doi: 10.1021/ja405922m
8 Zhou C. G. ; Yao S. J. ; Zhang Q. F. ; Wu J. P. ; Yang M. ; Forrey R. C. ; Cheng H. S. J. Mol. Model. 2011, 17, 2305.
doi: 10.1007/s00894-011-1059-7
9 Zhou C. ; Yao S. ; Wu J. ; Chen L. ; Forrey R. R. ; ChengH. J. Comput. Theor. Nanosci. 2009, 6, 1.
doi: 10.1166/jctn.2009.1181
10 Szarek P. ; Urakami K. ; Zhou C. ; Cheng H. ; Tachibana A. J. Chem. Phys. 2009, 130, 084111.
doi: 10.1063/1.3072369
11 Chen L. ; Zhou C. G. ; Wu J. P. ; Cheng H. S. Front. Phys. China 2009, 4, 356.
doi: 10.1007/s11467-009-0050-6
12 Zhou C. ; Yao S. ; Wu J. ; Forrey R. C. ; Chen L. ; Tachibana A. ; Cheng H. Phys. Chem. Chem. Phys. 2008, 10, 5445.
doi: 10.1039/B804877K
13 Zhou C. ; Wu J. ; Nie A. ; Forrey R. C. ; Tachibana A. ; Cheng H. J. Phys. Chem. C 2007, 111, 12773.
doi: 10.1021/jp073597e
14 Godbey D. J. ; Somorjai G. A. Surf. Sci. 1988, 204, 301.
doi: 10.1016/0039-6028(88)90215-4
15 ChristmannK. Surf. Sci. Rep. 1988, 9, 1.
doi: 10.1016/0167-5729(88)90009-X
16 Papoian G. ; N rskov J. K. ; Hoffmann R. J. Am. Chem. Soc. 2000, 122, 4129.
doi: 10.1021/ja993483j
17 Hammer B. ; Norskov J. K Nature 1995, 376, 238.
doi: 10.1038/376238a0
18 Olsen R. A. ; Kroes G. J. ; Baerends E. J. J. Chem. Phys. 1999, 111, 11155.
doi: 10.1063/1.480473
19 Watson G. W. ; Wells R. P. K. ; Willock D. J. ; Hutchings G. J. J. Phys. Chem. B 2001, 105, 4889.
doi: 10.1021/jp002864c
20 Nobuhara K. ; Kasai H. ; Di o W. A. ; Nakanishi H. Surf. Sci. 2004, 566–568 (Part 2), 703.
doi: 10.1016/j.susc.2004.06.003
21 Nobuhara K. ; Kasai H. ; Nakanishi H. ; Okiji A. J. Appl. Phys. 2002, 92, 5704.
doi: 10.1063/1.1512965
22 Deng J. ; Li H. ; Xiao J. ; Tu Y. ; Deng D. ; Yang H. ; Tian H. ; Li J. ; Ren P. ; Bao X. Energy Environ. Sci. 2015, 8, 1594.
doi: 10.1039/c5ee00751h
23 Wei H. ; Liu X. ; Wang A. ; Zhang L. ; Qiao B. ; Yang X. ; Huang Y. ; Miao S. ; Liu J. ; Zhang T. Nat. Comm. 2014, 5, 5634.
doi: 10.1038/ncomms6634
24 Shin S. I. ; Go A. ; Kim I. Y. ; Lee J. ; Lee Y. ; Hwang S.-J. Energy Environ. Sci. 2013, 6, 608.
doi: 10.1039/c2ee22739h
25 Lei Y. ; Mehmood F. ; Lee S. ; Greeley J. ; Lee B. ; Seifert S. ; Winans R. E. ; Elam J. W. ; Meyer R. J. ; Redfern P. C. ; Teschner D. ; Schlogl R. ; Pellin M. J. ; Curtiss L. A. ; Vajda S. Science 2010, 328, 224.
doi: 10.1126/science.1185200
26 Corma A. ; Serna P. ; Concepcion P. ; Juan Calvino J. J. Am. Chem. Soc. 2008, 130, 8748.
doi: 10.1021/ja800959g
27 Liu X. Y. ; Wang A. ; Zhang T. ; Mou C.-Y Nano Today 2013, 8, 403.
doi: 10.1016/j.nantod.2013.07.005
28 Campbell C. T. Nat. Chem. 2012, 4, 597.
doi: 10.1038/nchem.1412
29 Vayssilov G. N. ; Lykhach Y. ; Migani A. ; Staudt T. ; Petrova G. P. ; Tsud N. ; Skala T. ; Bruix A. ; Illas F. ; Prince K. C. ; Matolin V. ; Neyman K. M. ; Libuda J. Nat. Mater. 2011, 10, 310.
doi: 10.1038/nmat2976
30 Anderson P. E. ; Rodriguez N. M. Chem. Mater. 2000, 12, 823.
doi: 10.1021/cm990582n
31 Barrio L. ; Liu P. ; Rodríguez J. A. ; Campos-Martín J. M. ; Fierro J. L. G. J. Chem. Phys. 2006, 125, 164715.
doi: 10.1063/1.2363971
32 Liu Z.-P. ; Hu P. J. Am. Chem. Soc. 2003, 125, 1958.
doi: 10.1021/ja0207551
33 Gong X.-Q. ; Selloni A. ; Dulub O. ; Jacobson P. ; Diebold U. J. Am. Chem. Soc. 2008, 130, 370.
doi: 10.1021/ja0773148
34 Liu X. ; Dilger H. ; Eichel R. A. ; Kunstmann J. ; Roduner E. J. Phys. Chem. B 2016, 110, 2013.
doi: 10.1021/jp0561874
35 Okamoto Y. Chem. Phys. Lett. 2005, 405, 79.
doi: 10.1016/j.cplett.2005.02.018
36 Okamoto Y. Chem. Phys. Lett. 2006, 429, 209.
doi: 10.1016/j.cplett.2006.08.013
37 Gdowski G. E. ; Fair J. A. ; Madix R. J. Surf. Sci. 1983, 127, 541.
doi: 10.1016/0039-6028(83)90046-8
38 Richter L. J. ; Ho W. Phys. Rev. B 1987, 36, 9797.
doi: 10.1103/PhysRevB.36.9797
39 Au C. T. ; Zhou T. J. ; Lai W. J. Catal. Lett. 1999, 62, 147.
doi: 10.1023/a:1019019710780
40 Watari N. ; Ohnishi S. J. Chem. Phys. 1997, 106, 7531.
doi: 10.1063/1.473751
41 Koszinowski K. ; Schroder D. ; Schwarz H. J. Phys. Chem. A 2003, 107, 4999.
doi: 10.1021/jp027713j
42 Swart I. ; Fielicke A. ; Redlich B. ; Meijer G. ; Weckhuysen B. M. ; De Groot F. M. F. J. Am. Chem. Soc. 2007, 129, 2516.
doi: 10.1021/ja066261b
43 Swart I. ; De Groot F. M. F. ; Weckhuysen B. M. ; Gruene P. ; Meijer G. ; Fielicke A. J. Phys. Chem. A 2008, 112, 1139.
doi: 10.1021/jp076702t
44 Wang L. S. ; Cheng H. S. ; Fan J. W. J. Chem. Phys. 1995, 102, 9480.
doi: 10.1063/1.468817
45 Hakkinen H. ; Yoon B. ; Landman U. ; Li X. ; Zhai H. J. ; Wang L. S. J. Phys. Chem. A 2003, 107, 6168.
doi: 10.1021/jp035437i
46 Castleman A. W. ; Keesee R. G. Chem. Rev. 1986, 86, 589.
doi: 10.1021/cr00073a005
47 Deheer W. A. Rev. Mod. Phys. 1993, 65, 611.
doi: 10.1103/RevModPhys.65.611
48 Kerpal C. ; Harding D. J. ; Rayner D. M. ; Fielicke A. J. Phys. Chem. A 2013, 117, 8230.
doi: 10.1021/jp405120u
49 Szarek P. ; Urakami K. ; Zhou C. ; Cheng H. ; Tachibana A. J. Chem. Phys. 2009, 130
doi: 10.1063/1.3072369
50 Chen L. ; Cooper A. C. ; Pez G. P. ; Cheng H. J. Phys. Chem. C 2007, 111, 5514.
doi: 10.1021/jp070181s
51 Nie A. ; Wu J. ; Zhou C. ; Yao S. ; Luo C. ; Forrey R. C. ; Cheng H. Int. J. Quantum Chem. 2007, 107, 219.
doi: 10.1002/qua.21011
52 Luo C. ; Zhou C. ; Wu J. ; Kumar T. J. D. ; Balakrishnan N. ; Forrey R. C. ; Cheng H. Int. J. Quantum Chem. 2007, 107, 1632.
doi: 10.1002/qua.21315
53 Barreteau C. ; Guirado-López R. ; Spanjaard D. ; Desjonquères M. C. ; Ole? A. M. Phys. Rev. B 2000, 61, 7781.
doi: 10.1103/PhysRevB.61.7781
54 Li J. N. ; Pu M. ; Ma C. C. ; Tian Y. ; He J. ; Evans D. G. J. Mol. Catal. A: Chem. 2012, 359, 14.
doi: 10.1016/j.molcata.2012.03.015
55 Kadioglu Y. ; Demirkiran A. ; Yaraneri H. ; Akturk O. U. J. Alloy. Compd. 2014, 591, 188.
doi: 10.1016/j.jallcom.2013.12.074
56 Ignatov S. K. ; Okhapkin A. I. ; Gadzhiev O. B. ; Razuvaev A. G. ; Kunz S. ; Baumer M. J.Phys. Chem. C 2016, 120, 18570.
doi: 10.1021/acs.jpcc.6b04555
57 Liu X. J. ; Tian D. X. ; Meng C. G. J. Mol. Struct. 2015, 1080, 105.
doi: 10.1016/j.molstruc.2014.09.078
58 Pelzer A. W. ; Jellinek J. ; Jackson K. A. J. Phys. Chem. A 2015, 119, 3594.
doi: 10.1021/jp512643a
59 Shi Y. ; Ervin K. M. J. Chem. Phys. 1998, 108, 1757.
doi: 10.1063/1.475608
60 Balteanu I. ; Balaj O. P. ; Beyer M. K. ; Bondybey V. E. Phys. Chem. Chem. Phys. 2004, 6, 2910.
doi: 10.1039/b405211k
61 Huang L. ; Han B. ; Xi Y. J. ; Forrey R. C. ; Cheng H. S. ACS Catal. 2015, 5, 4592.
doi: 10.1021/acscatal.5b00689
62 Harding D. J. ; Kerpal C. ; Meijer G. ; Fielicke A Angew. Chem. Int. Ed. 2012, 51, 817.
doi: 10.1002/anie.201107042
63 Helali Z. ; Markovits A. ; Minot C. ; Abderrabba M. Chem. Phys. Lett. 2013, 565, 45.
doi: 10.1016/j.cplett.2013.02.026
64 Bruix A. ; Rodriguez J. A. ; Ramirez P. J. ; Senanayake S. D. ; Evans J. ; Park J. B. ; Stacchiola D. ; Liu P. ; Hrbek J. ; Illas F. J. Am. Chem. Soc. 2012, 134, 8968.
doi: 10.1021/ja302070k
65 Kerpal C. ; Harding D. J. ; Rayner D. M. ; Fielicke A. J. Phys. Chem. A 2013, 117, 8230.
doi: 10.1021/jp405120u
[1] 卢天,陈沁雪. 通过价层电子密度分析展现分子电子结构[J]. 物理化学学报, 2018, 34(5): 503-513.
[2] 尹玥琪,蒋梦绪,刘春光. Keggin型多酸负载的单原子催化剂(M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-)活化氮气分子的密度泛函理论计算研究[J]. 物理化学学报, 2018, 34(3): 270-277.
[3] 尹凡华,谭凯. 符合独立五元环规则的C100(417)Cl28形成机理的密度泛函理论研究[J]. 物理化学学报, 2018, 34(3): 256-262.
[4] 钟爱国,李嵘嵘,洪琴,张杰,陈丹. 从能量和信息理论视角理解单取代烷烃的异构化[J]. 物理化学学报, 2018, 34(3): 303-313.
[5] 丁晓琴,丁俊杰,李大禹,潘里,裴承新. 基于概念密度泛函理论磷酸酯类反应性物质毒性预测[J]. 物理化学学报, 2018, 34(3): 314-322.
[6] 陈驰,张雪,周志有,张新胜,孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[7] 刘玉玉,李杰伟,薄一凡,杨磊,张效霏,解令海,仪明东,黄维. 芴基张力半导体结构和光电性质的理论研究[J]. 物理化学学报, 2017, 33(9): 1803-1810.
[8] 徐位云,汪丽莉,宓一鸣,赵新新. Fe原子吸附对单层WS2结构和性质的影响[J]. 物理化学学报, 2017, 33(9): 1765-1772.
[9] 鄢慧君,李彪,蒋宁,夏定国. 阴离子硫氧化还原与Li1-xNiO2-ySy的结构稳定性:第一性原理研究[J]. 物理化学学报, 2017, 33(9): 1781-1788.
[10] 周扬,程庆庆,黄庆红,邹志青,严六明,杨辉. 高分散钴氮共掺杂碳纳米纤维氧还原催化剂[J]. 物理化学学报, 2017, 33(7): 1429-1435.
[11] 郭姿含, 胡竹斌, 孙真荣, 孙海涛. 有机半导体的电子电离能、亲和势和极化能的密度泛函理论研究[J]. 物理化学学报, 2017, 33(6): 1171-1180.
[12] 王俊, 魏子栋. 非贵金属氧还原催化剂的研究进展[J]. 物理化学学报, 2017, 33(5): 886-902.
[13] 陈爱喜, 汪宏, 段赛, 张海明, 徐昕, 迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.
[14] 胡益浩, 宋通洋, 王月娟, 胡庚申, 谢冠群, 罗孟飞. Zn/SiO2气相催化裂解1,1,2-三氯乙烷脱HCl:酸性与失活[J]. 物理化学学报, 2017, 33(5): 1017-1026.
[15] 韩磊, 彭丽, 蔡凌云, 郑旭明, 张富山. 液态聚乙二醇CH2剪切振动和扭转振动——拉曼光谱和密度泛函理论计算[J]. 物理化学学报, 2017, 33(5): 1043-1050.